This patch implements the main() function for Galileo platform. At this
moment, only Processes subsystem is enabled. After this patch we are
able to some rudimentary debugging to ensure that process thread from
applications are being indeed executed.
Once we properly support more Contiki subsystems, such as clock, ctimer,
etimer, and rtimer, we will add them to Galileo platform's main() as well.
All we need to provide to C at this point is a region in memory dedicated to
its stack. This is done by allocating a region in .bss and pushing its start
address to esp. Since the multiboot spec says it is not safe to rely on the
initial stack provided by the bootloader, this patch provides our own stack.
Galileo boards have 512Kb of SRAM and 256Mb of DDR3 RAM, so providing 8kb as
a start seems safe. Moreover, stack sizes are very application-oriented
so it may be too early to provide a bigger (or smaller) stack.
This patch changes Galileo's buildsystem to print the elf sections
sizes after a new image is built. This way we can easily track how
these sections increase or decrease after any change.
To achieve that, we define a custom linking rule which is pretty much
the same as the default linking rule define in Makefile.include, but
we run 'size' command after the image is built.
This patch adds a README file which contains general information about
the Intel Galileo board support. The file provides information about
supported features as well as instructions on how to build, run and debug
applications for this platform.
This patch the 'debug' rule to simplify the debugging process. This new
rule runs OpenOCD and gdb with the right parameters. OpenOCD runs in
background and its output will be redirected to a log file in the
application's path called LOG_OPENOCD. Once gdb client is detached,
OpenOCD is terminated.
The 'debug' rule is defined in Makefile.customrules-galileo file (create
by this patch) which is included by the Contiki's buildsystem. So to
debug a Contiki application for Galileo board, run the following command:
$ make TARGET=galileo debug
If you use a gdb front-end, you can define the "GDB" environment variable
and your gdb front-end will be used instead of default gdb. For instance,
if you want to use cgdb front-end, just run the command:
$ make BOARD=galileo debug GDB=cgdb
This patch adds the initial support for Intel Galileo Platform. It
contains the minimum set of code required to boot a dummy Contiki
image.
For Galileo initial support, we implemented a linker script, a minimal
bootstrap code, a set of stubbed functions required by newlib, and a
very simple main() function. Moreover, we also define some header files
and macros required by Contiki.
To build applications for this platform you should first build newlib
(in case it wasn't already built). To build newlib you can run the
following command:
$ platform/galileo/bsp/libc/build_newlib.sh
Once newlib is built, you can build applications. To build applications
for Galileo platform you should set TARGET variable to 'galileo'. For
instance, building the hello-world application should look like this:
$ cd examples/hello-world/ && make TARGET=galileo
This will generate the 'hello-world.galileo' file which is a multiboot-
compliant [1] ELF image. This image can be booted by any multiboot-
complaint bootloader such as Grub.
Finally, this patch should be used as a guideline to add the initial
support for others platforms based on x86 SoCs.
[1] https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
This patch creates the platform/galileo/bsp directory. This directory
contain all files related to Galileo's Board Support Package (BSP). For
now, the BSP consists of libc and bootloader.
Within the BSP directory, we have the scripts build_newlib.sh and build_
grub.sh. These scripts provide an easy and quick way to build the newlib
and the grub for the Galileo platform.
Currently there are only one platform using CPU x86: Cooja. The
elfloader-x86.c is rather a POSIX implementation, so the Galileo port
won't use it for now. This patch fixes this by moving this source file to
be included by the platforms using it instead of the cpu's Makefile.
The peripheral core clocks of the PWM timers are gated in PM1+, so these
power modes must be disabled if a PWM timer is running. Use
lpm_register_peripheral() to handle this automatically and dynamically.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
The peripheral core clock of the general-purpose timers used by the PWM
driver is the system clock, not the I/O clock.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
According to the Procedure Call Standard for the ARM Architecture
(AAPCS) - ABI r2.09 [1], §5.2.1.2, the stack pointer must be
double-word-aligned at a public interface. The stack implementation
being full-descending, this requires that the top of stack be
double-word-aligned too.
[1] http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>