* Renamed packetbuf attribute PACKETBUF_ATTR_MAX_MAC_REXMIT to PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS where value 0 (attribute not set) means that default number of transmissions should be used.
main ideas are:
* Separates the Contiki low-layer network stack into four layers:
network (e.g. sicslowpan / rime), Medium Access Control MAC
(e.g. CSMA), Radio Duty Cycling RDC (e.g. ContikiMAC, X-MAC), and
radio (e.g. cc2420).
* Introduces a new way to configure the network stack. Four #defines
that specify what mechanism/protocol/driver to use at the four
layers: NETSTACK_CONF_NETWORK, NETSTACK_CONF_MAC, NETSTACK_CONF_RDC,
NETSTACK_CONF_RADIO.
* Adds a callback mechanism to inform the MAC and network layers about
the fate of a transmitted packet: if the packet was not possible to
transmit, the cause of the failure is reported, and if the packets
was successfully transmitted, the number of tries before it was
finally transmitted is reported.
* NULL-protocols at both the MAC and RDC layers: nullmac and nullrdc,
which can be used when MAC and RDC functionality is not needed.
* Extends the radio API with three new functions that enable more
efficient radio duty cycling protocols: channel check, pending
packet, and receiving packet.
* New initialization mechanism, which takes advantage of the NETSTACK
#defines.
sicslowpan tags TCP packets with the PACKETBUF_ATTR_PACKET_TYPE_STREAM
flag, which makes the underlying power-saving MAC layer keep the radio
on for some time after transmitting the packet. This allows reply
packets to be processed directly, significantly increasing TCP latency
and throughput.