The CC2538 currently has two addressing options: a hardcoded address set
at compile time or the address stored in primary address section of the
info page. This commit adds the option to choose the secondary location
of the ieee address from the info page, or any memory address.
To use, define `IEEE_ADDR_CONF_USE_SECONDARY_LOCATION` in `project-conf.h`
or similar.
For example:
#define IEEE_ADDR_CONF_USE_SECONDARY_LOCATION 1
Some CFLAGS and LDFLAGS previously only enabled with SMALL=1 have
now been enabled for all builds, regardless of the value of SMALL.
Therefore, from now on, SMALL only chooses between -Os and -O2
As discussed in #503, -Os was broken with one of the toolchains
recommended in the platform's README and for that reason we were
using -O2 by default.
This commit sets the default to -Os and updates the README to no
longer recommend the toolchain in question
lpm.c needs to #include lpm.h in order to get the definition of
lpm_periph_permit_pm1_func_t, which made the replacement macros conflict with
the function definitions for the LPM_CONF_ENABLE == 0 case. This change fixes
this issue by #if-ing out the code in lpm.c in that case. Also, the replacement
macro for lpm_register_peripheral() was missing in that case, which is fixed
here.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
If a project needs to use some libraries at link stage, then the corresponding
linker options (e.g. '-lm') have to be passed after any .o file depending on
these libraries. Hence, LDFLAGS cannot be used to add such options when invoking
$(LD) in Makefile.cc2538, or it should be moved to the correct location.
Instead, this change adds TARGET_LIBFILES to the correct location, like most
other Contiki targets.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Some SoC data requires huge alignments. E.g., the µDMA channel control table has
to be 1024-byte aligned. This table was simply aligned to 1024 bytes in the C
code, which had the following consequences, wasting a lot of RAM:
- As this table could be placed anywhere in .bss, there could be an alignment
gap of up to 1023 bytes between the preceding data and this table.
- The size of this table was also aligned to 1024 bytes, regardless of
UDMA_CONF_MAX_CHANNEL, making this configuration option supposed to save RAM
just useless.
- .bss was also aligned to at least 1024 bytes, creating a huge alignment gap
between .data and .bss.
Instead of relying on the compiler to force this alignment, and on the linker to
automatically place data, this change places carefully such SoC data in RAM
using the linker script. A dedicated section is created to place such SoC data
requiring huge alignments, and it is put at the beginning of the SRAM in order
to ensure a maximal alignment without any gap. In this way, the alignment of
.bss also remains normal, and the size of this table is not constrained by its
alignment, but only by its contents (i.e. by UDMA_CONF_MAX_CHANNEL).
In the case of the µDMA channel control table, the data is still zeroed by
udma_init() (instead of also being zeroed as part of .bss).
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Normally, the linker does not sort files and sections matched by wildcards, so
they are placed in the order in which they are seen during link. If numerous
objects with different alignments are mixed, or if objects with unusually large
alignments are present, this very likely leads to a lot of space being wasted
because of accumulated alignment gaps.
This commit forces input sections to be sorted by alignment (unless this is
overridden by the linker script), which decreases the number and the size of
alignment gaps, thus saving space.
For a typical Contiki project, this change saves nearly 1 kiB, mainly in .bss.
Note that this behavior is only enabled if the SMALL make variable is set to 1,
because this makes more sense for a size optimization.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
The .nrdata section is volatile, so its initialization must be controlled by the
application, and not be automatically done by the startup code. It should
neither be zeroed like .bss, nor be initialized from data in flash memory like
.data. This was already supposed to be the case, but the output section type of
.nrdata was not set to NOLOAD, causing the generated ELF .nrdata section header
to be of type PROGBITS instead of NOBITS, i.e. load data was generated to be
programmed in RAM, thus producing huge unprogrammable .bin files.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
When returning from PM1/2, the sleep timer value (used by RTIMER_NOW()) is not
up-to-date until a positive edge on the 32-kHz clock has been detected after the
system clock restarted. To ensure an updated value is read, wait for a positive
transition on the 32-kHz clock by polling the SYS_CTRL_CLOCK_STA.SYNC_32K bit,
before reading the sleep timer value.
Because of this RTIMER_NOW() fixup, lpm_exit() has to be called at the very
beginning of ISRs waking up the SoC. This also ensures that all clocks and
timers are enabled at the correct frequency and updated before using them
following wake-up.
Without this fix, etimers could sometimes (randomly, depending on timings)
become ultra slow (observed from 10x to 40x slower than normal) if the system
exited PM1/2 very often. This issue occurred more often with PM1.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
As recommended by the CC2538 User's Guide, set SYS_CTRL_CLOCK_CTRL.OSC_PD to 0
before asserting WFI, and set it to 1 after the system clock is sourced from the
32-MHz XOSC following wake-up. This allows to automatically start both
oscillators upon wake-up in order to partially hide the 32-MHz XOSC startup time
by the 16-MHz RCOSC startup time.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
As a matter of precaution, always make sure that pending system clock
transitions are complete before requesting a new change of the system clock
source.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
In one of the abort cases in lpm_enter(), the energest context has previously
been set to LPM, so the abort code needs to set it back to CPU.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Create a dedicated header file with all the definitions for the flash lock bit
page and customer configuration area. This avoids duplicating those definitions
in the startup-gcc.c files of all CC2538-based platforms, and this also allows
to easily manipulate the CCA from outside startup-gcc.c (e.g. for on-the-air
firmware update).
The definitions are now complete contrary to what was in startup-gcc.c:
- Definitions have been added to select the bootloader backdoor pin and active
level if enabled.
- Definitions have been added to access the page and debug lock bits. The debug
lock bit can be used to prevent someone from reading back a programmed
firmware through JTAG if the firmware binary image has to be confidential,
which should be combined with a disabled bootloader backdoor.
- The application entry point is now tied to the beginning of the .text section
instead of to the beginning of the flash. This allows projects using custom
linker scripts to place the application entry point anywhere in the flash,
which can be useful e.g. for on-the-air firmware update.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
The pending GPIO power-up interrupts have to be cleared in the ISRs in order not
to re-trigger the interrupts and the wake-up events.
The power-up interrupts of all pins are cleared for each port in the
corresponding port ISR. This is done after calling the registered callbacks so
that the callbacks can know which pin woke up the SoC. This is done after
clearing the regular interrupt in order to avoid getting a new wake-up interrupt
without the regular interrupt in the case of a new wake-up edge occurring
between the two clears.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
The GPIO power-up interrupts have to be configured and enabled in order to be
able to wake-up the SoC from PM1+ upon a signal edge occurring on a GPIO input
pin.
This set of macros allows to:
- configure the signal edge triggering a power-up interrupt,
- enable and disable a power-up interrupt,
- clear a power-up interrupt flag.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
If PM2 is enabled with LPM_CONF_MAX_PM, but not active, the non-retention area
of the SRAM can be useful to place temporary data that does not fit in the
low-leakage SRAM, typically after having called lpm_set_max_pm(LPM_PM1). Hence,
give access to this non-retention area thanks to .nrdata* sections.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
The data sheet recommends that the USB pull-up resistor be driven by a GPIO so
that it can be controlled by software, but this is not mandatory. Hence, leave
the choice so that CC253-based boards not using this option can build and work
fine.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Homogenize port and pin definitions naming:
- PERIPHERAL_FUNCTION_PORT for the port ID,
- PERIPHERAL_FUNCTION_PIN for the pin ID,
- PERIPHERAL_FUNCTION_PORT_BASE for the port base,
- PERIPHERAL_FUNCTION_PIN_MASK for the pin mask.
Define only PERIPHERAL_FUNCTION_PORT and PERIPHERAL_FUNCTION_PIN in board.h, and
deduce PERIPHERAL_FUNCTION_PORT_BASE and PERIPHERAL_FUNCTION_PIN_MASK in the
driver from the former definitions.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Use the GPIO accessor macros instead of copying raw register access code all
over the place. This is cleaner and less error prone.
This fixes the setting of the USB pull-up resistor that worked only by chance on
the CC2538DK because it is controlled by the pin 0 of the used GPIO port.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Introduce new useful GPIO macros to:
- read the levels of some port pins,
- write the levels of some port pins (pass bit-field value to be set),
- clear the interrupt flags for some port pins.
These macros are cleaner and less error prone than raw register access code
copied all over the place.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
The parameters in the GPIO macros were used without being parenthesized. This
could generate wrong values for register assignments in the case of expressions
passed as arguments to these macros.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
lpm_enter() must not enter PM1+ if the UART TX FIFO is not empty. Otherwise, the
UART clock gets disabled, and its TX is broken.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Some peripherals have their clocks automatically gated in PM1+ modes, so they
cannot operate. This new mechanism gives peripherals a way to prohibit PM1+
modes so that they can properly complete their current operations before
entering PM1+.
This mechanism is implemented with peripheral functions registered to the LPM
module. These functions return whether the associated peripheral permits or not
PM1+ modes. They are called by the LPM module each time PM1+ might be possible.
If any of the peripherals wants to block PM1+, then the system is only dropped
to PM0.
Partly from: George Oikonomou
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>