This PR simply adds a packet sent callback to the unicast connection used in the example. Every time a packet is sent the callback is called and prints the linkaddr_t dest, the MAC status of the message sent, and the link layer number of transmissions of the packet. This can be used to compute link quality estimations.
This test could sometimes fail because of a lack of free contiguous
pages in the file system. Fix this by removing the created files at the
end of each test. Besides, the test files do not have to be removed at
the beginning of each test since the file system is initially formatted.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
The r variable was used instead of i to fill the buffer, resulting in
the end of the test loop after only a single iteration. The file was not
even closed at the end of each iteration although it is opened at the
beginning of each iteration, so the available file descriptors would
very quickly be exhausted.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
The filenames were mixed up between some of the tests, thus breaking the
purpose of these tests.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
Remove the file at the beginning of the test, before opening it for
writing, in order to start the test with an empty file system, not only
after flashing the test, but also following every reboot.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
Two errors have been spotted, when IPv6 is enabled in the ravenusb
Project-Makefile:
#CONTIKI_NO_NET=1
CONTIKI_WITH_IPV6=1
The compile error results from a variable name mismatch in cdc_task.c
The variable 'r' is undeclared and should be renamed to 'route'
The linker also fails with 'undefined references'
This has been mediated by adding 'core/net' to Modules in the
Project-Makefile.
This patch adds a simple non-driver protection domain sample to serve
as an example for defining other non-driver protection domains. It
simply performs a ping-pong test of protection domain switching
latency during boot, including optional accesses to a private metadata
region, and prints out the results.
Now that the CBM PFS supports file removal (and a file seek stub) it is possible to have the Telnet server leverage the IDE64 support of the CBM PFS.
Note: Using the CBM PFS for the Telnet server does _not_ reduce the code size since the POSIX I/O functions are additionally still linked in because the POSIX directory functions internally use the POSIX I/O functions. And that's the very reason why the CBM PFS is _not_ activated for the C128 Telnet server: The CBM PFS for the C128 doesn't bring IDE64 support but is supposed to be used to reduce code size - but this isn't possible for the Telnet server.