split SPI code into generic and CC2420-related and renamed constants in CC2420

This commit is contained in:
joxe 2010-06-23 10:15:28 +00:00
parent 898c00b812
commit f7a82a9145
3 changed files with 203 additions and 272 deletions

View file

@ -28,7 +28,7 @@
* *
* This file is part of the Contiki operating system. * This file is part of the Contiki operating system.
* *
* @(#)$Id: cc2420.c,v 1.55 2010/06/21 19:48:00 joxe Exp $ * @(#)$Id: cc2420.c,v 1.56 2010/06/23 10:15:28 joxe Exp $
*/ */
/* /*
* This code is almost device independent and should be easy to port. * This code is almost device independent and should be easy to port.
@ -150,42 +150,38 @@ static uint8_t receive_on;
static int channel; static int channel;
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static uint8_t rxptr; /* Pointer to the next byte in the rxfifo. */
static void static void
getrxdata(void *buf, int len) getrxdata(void *buf, int len)
{ {
FASTSPI_READ_FIFO_NO_WAIT(buf, len); SPI_READ_FIFO_BUF(buf, len);
rxptr = (rxptr + len) & 0x7f;
} }
static void static void
getrxbyte(uint8_t *byte) getrxbyte(uint8_t *byte)
{ {
FASTSPI_READ_FIFO_BYTE(*byte); SPI_READ_FIFO_BYTE(*byte);
rxptr = (rxptr + 1) & 0x7f;
} }
static void static void
flushrx(void) flushrx(void)
{ {
uint8_t dummy; uint8_t dummy;
FASTSPI_READ_FIFO_BYTE(dummy); SPI_READ_FIFO_BYTE(dummy);
FASTSPI_STROBE(CC2420_SFLUSHRX); SPI_STROBE(CC2420_SFLUSHRX);
FASTSPI_STROBE(CC2420_SFLUSHRX); SPI_STROBE(CC2420_SFLUSHRX);
rxptr = 0;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static void static void
strobe(enum cc2420_register regname) strobe(enum cc2420_register regname)
{ {
FASTSPI_STROBE(regname); SPI_STROBE(regname);
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static unsigned int static unsigned int
status(void) status(void)
{ {
uint8_t status; uint8_t status;
FASTSPI_UPD_STATUS(status); SPI_GET_STATUS(status);
return status; return status;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
@ -197,7 +193,7 @@ on(void)
/* PRINTF("on\n");*/ /* PRINTF("on\n");*/
receive_on = 1; receive_on = 1;
ENABLE_FIFOP_INT(); CC2420_ENABLE_FIFOP_INT();
strobe(CC2420_SRXON); strobe(CC2420_SRXON);
while(!(status() & (BV(CC2420_XOSC16M_STABLE)))); while(!(status() & (BV(CC2420_XOSC16M_STABLE))));
ENERGEST_ON(ENERGEST_TYPE_LISTEN); ENERGEST_ON(ENERGEST_TYPE_LISTEN);
@ -214,10 +210,10 @@ off(void)
ENERGEST_OFF(ENERGEST_TYPE_LISTEN); ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
strobe(CC2420_SRFOFF); strobe(CC2420_SRFOFF);
DISABLE_FIFOP_INT(); CC2420_DISABLE_FIFOP_INT();
LEDS_OFF(LEDS_GREEN); LEDS_OFF(LEDS_GREEN);
if(!FIFOP_IS_1) { if(!CC2420_FIFOP_IS_1) {
flushrx(); flushrx();
} }
} }
@ -242,14 +238,14 @@ static unsigned
getreg(enum cc2420_register regname) getreg(enum cc2420_register regname)
{ {
unsigned reg; unsigned reg;
FASTSPI_GETREG(regname, reg); SPI_READ_REG(regname, reg);
return reg; return reg;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static void static void
setreg(enum cc2420_register regname, unsigned value) setreg(enum cc2420_register regname, unsigned value)
{ {
FASTSPI_SETREG(regname, value); SPI_WRITE_REG(regname, value);
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static void static void
@ -276,8 +272,8 @@ cc2420_init(void)
{ {
int s = splhigh(); int s = splhigh();
cc2420_arch_init(); /* Initalize ports and SPI. */ cc2420_arch_init(); /* Initalize ports and SPI. */
DISABLE_FIFOP_INT(); CC2420_DISABLE_FIFOP_INT();
FIFOP_INT_INIT(); CC2420_FIFOP_INT_INIT();
splx(s); splx(s);
} }
@ -329,7 +325,7 @@ cc2420_init(void)
cc2420_set_channel(26); cc2420_set_channel(26);
flushrx(); flushrx();
process_start(&cc2420_process, NULL); process_start(&cc2420_process, NULL);
return 1; return 1;
} }
@ -377,12 +373,13 @@ cc2420_transmit(unsigned short payload_len)
#endif /* WITH_SEND_CCA */ #endif /* WITH_SEND_CCA */
for(i = LOOP_20_SYMBOLS; i > 0; i--) { for(i = LOOP_20_SYMBOLS; i > 0; i--) {
if(SFD_IS_1) { if(CC2420_SFD_IS_1) {
if(!(status() & BV(CC2420_TX_ACTIVE))) { if(!(status() & BV(CC2420_TX_ACTIVE))) {
/* SFD went high but we are not transmitting. This means that /* SFD went high but we are not transmitting. This means that
we just started receiving a packet, so we drop the we just started receiving a packet, so we drop the
transmission. */ transmission. */
RELEASE_LOCK(); RELEASE_LOCK();
printf("CC2420 Collission\n");
return RADIO_TX_COLLISION; return RADIO_TX_COLLISION;
} }
if(receive_on) { if(receive_on) {
@ -453,10 +450,10 @@ cc2420_prepare(const void *payload, unsigned short payload_len)
checksum = crc16_data(payload, payload_len, 0); checksum = crc16_data(payload, payload_len, 0);
#endif /* CC2420_CONF_CHECKSUM */ #endif /* CC2420_CONF_CHECKSUM */
total_len = payload_len + AUX_LEN; total_len = payload_len + AUX_LEN;
FASTSPI_WRITE_FIFO(&total_len, 1); SPI_WRITE_FIFO_BUF(&total_len, 1);
FASTSPI_WRITE_FIFO(payload, payload_len); SPI_WRITE_FIFO_BUF(payload, payload_len);
#if CC2420_CONF_CHECKSUM #if CC2420_CONF_CHECKSUM
FASTSPI_WRITE_FIFO(&checksum, CHECKSUM_LEN); SPI_WRITE_FIFO_BUF(&checksum, CHECKSUM_LEN);
#endif /* CC2420_CONF_CHECKSUM */ #endif /* CC2420_CONF_CHECKSUM */
RELEASE_LOCK(); RELEASE_LOCK();
@ -574,18 +571,18 @@ cc2420_set_pan_addr(unsigned pan,
tmp[0] = pan & 0xff; tmp[0] = pan & 0xff;
tmp[1] = pan >> 8; tmp[1] = pan >> 8;
FASTSPI_WRITE_RAM_LE(&tmp, CC2420RAM_PANID, 2, f); SPI_WRITE_RAM(&tmp, CC2420RAM_PANID, 2);
tmp[0] = addr & 0xff; tmp[0] = addr & 0xff;
tmp[1] = addr >> 8; tmp[1] = addr >> 8;
FASTSPI_WRITE_RAM_LE(&tmp, CC2420RAM_SHORTADDR, 2, f); SPI_WRITE_RAM(&tmp, CC2420RAM_SHORTADDR, 2);
if(ieee_addr != NULL) { if(ieee_addr != NULL) {
uint8_t tmp_addr[8]; uint8_t tmp_addr[8];
/* LSB first, MSB last for 802.15.4 addresses in CC2420 */ /* LSB first, MSB last for 802.15.4 addresses in CC2420 */
for (f = 0; f < 8; f++) { for (f = 0; f < 8; f++) {
tmp_addr[7 - f] = ieee_addr[f]; tmp_addr[7 - f] = ieee_addr[f];
} }
FASTSPI_WRITE_RAM_LE(tmp_addr, CC2420RAM_IEEEADDR, 8, f); SPI_WRITE_RAM(tmp_addr, CC2420RAM_IEEEADDR, 8);
} }
RELEASE_LOCK(); RELEASE_LOCK();
} }
@ -601,7 +598,7 @@ TIMETABLE_AGGREGATE(aggregate_time, 10);
int int
cc2420_interrupt(void) cc2420_interrupt(void)
{ {
CLEAR_FIFOP_INT(); CC2420_CLEAR_FIFOP_INT();
process_poll(&cc2420_process); process_poll(&cc2420_process);
#if CC2420_TIMETABLE_PROFILING #if CC2420_TIMETABLE_PROFILING
timetable_clear(&cc2420_timetable); timetable_clear(&cc2420_timetable);
@ -609,7 +606,6 @@ cc2420_interrupt(void)
#endif /* CC2420_TIMETABLE_PROFILING */ #endif /* CC2420_TIMETABLE_PROFILING */
pending++; pending++;
cc2420_packets_seen++; cc2420_packets_seen++;
return 1; return 1;
} }
@ -656,7 +652,7 @@ cc2420_read(void *buf, unsigned short bufsize)
uint16_t checksum; uint16_t checksum;
#endif /* CC2420_CONF_CHECKSUM */ #endif /* CC2420_CONF_CHECKSUM */
if(!FIFOP_IS_1) { if(!CC2420_FIFOP_IS_1) {
return 0; return 0;
} }
/* if(!pending) { /* if(!pending) {
@ -724,8 +720,8 @@ cc2420_read(void *buf, unsigned short bufsize)
len = AUX_LEN; len = AUX_LEN;
} }
if(FIFOP_IS_1) { if(CC2420_FIFOP_IS_1) {
if(!FIFO_IS_1) { if(!CC2420_FIFO_IS_1) {
/* Clean up in case of FIFO overflow! This happens for every /* Clean up in case of FIFO overflow! This happens for every
* full length frame and is signaled by FIFOP = 1 and FIFO = * full length frame and is signaled by FIFOP = 1 and FIFO =
* 0. */ * 0. */
@ -831,7 +827,7 @@ cc2420_cca(void)
/* printf("cc2420_rssi: RSSI not valid.\n"); */ /* printf("cc2420_rssi: RSSI not valid.\n"); */
} }
cca = CCA_IS_1; cca = CC2420_CCA_IS_1;
if(radio_was_off) { if(radio_was_off) {
cc2420_off(); cc2420_off();
@ -843,13 +839,13 @@ cc2420_cca(void)
int int
cc2420_receiving_packet(void) cc2420_receiving_packet(void)
{ {
return SFD_IS_1; return CC2420_SFD_IS_1;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
static int static int
pending_packet(void) pending_packet(void)
{ {
return FIFOP_IS_1; return CC2420_FIFOP_IS_1;
} }
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
void void

View file

@ -28,7 +28,7 @@
* *
* This file is part of the Contiki operating system. * This file is part of the Contiki operating system.
* *
* $Id: cc2420.h,v 1.9 2010/02/23 18:24:49 adamdunkels Exp $ * $Id: cc2420.h,v 1.10 2010/06/23 10:15:28 joxe Exp $
*/ */
/** /**
@ -36,13 +36,16 @@
* CC2420 driver header file * CC2420 driver header file
* \author * \author
* Adam Dunkels <adam@sics.se> * Adam Dunkels <adam@sics.se>
* Joakim Eriksson <joakime@sics.se>
*/ */
#ifndef __CC2420_H__ #ifndef __CC2420_H__
#define __CC2420_H__ #define __CC2420_H__
#include "contiki.h" #include "contiki.h"
#include "spi.h"
#include "dev/radio.h" #include "dev/radio.h"
#include "cc2420_const.h"
int cc2420_init(void); int cc2420_init(void);
@ -52,8 +55,8 @@ void cc2420_set_channel(int channel);
int cc2420_get_channel(void); int cc2420_get_channel(void);
void cc2420_set_pan_addr(unsigned pan, void cc2420_set_pan_addr(unsigned pan,
unsigned addr, unsigned addr,
const uint8_t *ieee_addr); const uint8_t *ieee_addr);
extern signed char cc2420_last_rssi; extern signed char cc2420_last_rssi;
extern uint8_t cc2420_last_correlation; extern uint8_t cc2420_last_correlation;
@ -86,4 +89,102 @@ int cc2420_off(void);
void cc2420_set_cca_threshold(int value); void cc2420_set_cca_threshold(int value);
/************************************************************************/
/* Additional SPI Macros for the CC2420 */
/************************************************************************/
/* Send a strobe to the CC2420 */
#define SPI_STROBE(s) \
do { \
CC2420_SPI_ENABLE(); \
SPI_WRITE(s); \
CC2420_SPI_DISABLE(); \
} while (0)
/* Write to a register in the CC2420 */
/* Note: the SPI_WRITE(0) seems to be needed for getting the */
/* write reg working on the Z1 / MSP430X platform */
#define SPI_WRITE_REG(adr,data) \
do { \
CC2420_SPI_ENABLE(); \
SPI_WRITE_FAST(adr); \
SPI_WRITE_FAST((uint8_t)((data) >> 8)); \
SPI_WRITE_FAST((uint8_t)(data & 0xff)); \
SPI_WAITFORTx_ENDED(); \
SPI_WRITE(0); \
CC2420_SPI_DISABLE(); \
} while(0)
/* Read a register in the CC2420 */
#define SPI_READ_REG(adr,data) \
do { \
CC2420_SPI_ENABLE(); \
SPI_WRITE(adr | 0x40); \
data = (uint8_t)SPI_RXBUF; \
SPI_TXBUF = 0; \
SPI_WAITFOREORx(); \
data = SPI_RXBUF << 8; \
SPI_TXBUF = 0; \
SPI_WAITFOREORx(); \
data |= SPI_RXBUF; \
CC2420_SPI_DISABLE(); \
} while(0)
#define SPI_READ_FIFO_BYTE(data) \
do { \
CC2420_SPI_ENABLE(); \
SPI_WRITE(CC2420_RXFIFO | 0x40); \
(void)SPI_RXBUF; \
SPI_READ(data); \
clock_delay(1); \
CC2420_SPI_DISABLE(); \
} while(0)
#define SPI_READ_FIFO_BUF(buffer,count) \
do { \
uint8_t i; \
CC2420_SPI_ENABLE(); \
SPI_WRITE(CC2420_RXFIFO | 0x40); \
(void)SPI_RXBUF; \
for(i = 0; i < (count); i++) { \
SPI_READ(((uint8_t *)(buffer))[i]); \
} \
clock_delay(1); \
CC2420_SPI_DISABLE(); \
} while(0)
#define SPI_WRITE_FIFO_BUF(buffer,count) \
do { \
uint8_t i; \
CC2420_SPI_ENABLE(); \
SPI_WRITE_FAST(CC2420_TXFIFO); \
for(i = 0; i < (count); i++) { \
SPI_WRITE_FAST(((uint8_t *)(buffer))[i]); \
} \
SPI_WAITFORTx_ENDED(); \
CC2420_SPI_DISABLE(); \
} while(0)
/* Write to RAM in the CC2420 */
#define SPI_WRITE_RAM(buffer,adr,count) \
do { \
uint8_t i; \
CC2420_SPI_ENABLE(); \
SPI_WRITE_FAST(0x80 | (adr & 0x7f)); \
SPI_WRITE_FAST((adr >> 1) & 0xc0); \
for(i = 0; i < (count); i++) { \
SPI_WRITE_FAST(((uint8_t*)(buffer))[i]); \
} \
SPI_WAITFORTx_ENDED(); \
CC2420_SPI_DISABLE(); \
} while(0)
/* Read status of the CC2420 */
#define SPI_GET_STATUS(s) \
do { \
CC2420_SPI_ENABLE(); \
SPI_WRITE(CC2420_SNOP); \
s = SPI_RXBUF; \
CC2420_SPI_DISABLE(); \
} while (0)
#endif /* __CC2420_H__ */ #endif /* __CC2420_H__ */

View file

@ -1,8 +1,44 @@
/* -*- C -*- */ /*
/* @(#)$Id: spi.h,v 1.7 2010/03/15 23:01:37 nifi Exp $ */ * Copyright (c) 2010, Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: spi.h,v 1.8 2010/06/23 10:15:28 joxe Exp $
*/
#ifndef SPI_H /**
#define SPI_H * \file
* Basic SPI macros
* \author
* Joakim Eriksson <joakime@sics.se>
* Niclas Finne <nfi@sics.se>
*/
#ifndef __SPI_H__
#define __SPI_H__
/* Define macros to use for checking SPI transmission status depending /* Define macros to use for checking SPI transmission status depending
on if it is possible to wait for TX buffer ready. This is possible on if it is possible to wait for TX buffer ready. This is possible
@ -21,238 +57,36 @@ extern unsigned char spi_busy;
void spi_init(void); void spi_init(void);
/****************************************************************************************************** /* Write one character to SPI */
* TEXAS INSTRUMENTS INC., * #define SPI_WRITE(data) \
* MSP430 APPLICATIONS. * do { \
* Copyright Texas Instruments Inc, 2004 * SPI_WAITFORTx_BEFORE(); \
*****************************************************************************************************/ SPI_TXBUF = data; \
SPI_WAITFOREOTx(); \
} while(0)
/*********************************************************** /* Write one character to SPI - will not wait for end
FAST SPI: Low level functions useful for multiple writes with wait after final */
***********************************************************/ #define SPI_WRITE_FAST(data) \
do { \
SPI_WAITFORTx_BEFORE(); \
SPI_TXBUF = data; \
SPI_WAITFORTx_AFTER(); \
} while(0)
#define FASTSPI_TX(x)\ /* Read one character from SPI */
do {\ #define SPI_READ(data) \
SPI_WAITFORTx_BEFORE();\ do { \
SPI_TXBUF = x;\ SPI_TXBUF = 0; \
SPI_WAITFORTx_AFTER();\ SPI_WAITFOREORx(); \
} while(0) data = SPI_RXBUF; \
} while(0)
#define FASTSPI_RX(x)\ /* Flush the SPI read register */
do {\ #define SPI_FLUSH() \
SPI_TXBUF = 0;\ do { \
SPI_WAITFOREORx();\ SPI_RXBUF; \
x = SPI_RXBUF;\ } while(0);
} while(0)
#define FASTSPI_CLEAR_RX(x) do{ SPI_RXBUF; }while(0)
#define FASTSPI_RX_GARBAGE()\
do {\
SPI_TXBUF = 0;\
SPI_WAITFOREORx();\
(void)SPI_RXBUF;\
} while(0)
#define FASTSPI_TX_MANY(p,c)\
do {\
u8_t spiCnt;\
for (spiCnt = 0; spiCnt < (c); spiCnt++) {\
FASTSPI_TX(((u8_t*)(p))[spiCnt]);\
}\
SPI_WAITFORTx_ENDED();\
} while(0)
#define FASTSPI_RX_WORD(x)\ #endif /* __SPI_H__ */
do {\
SPI_TXBUF = 0;\
SPI_WAITFOREORx();\
x = SPI_RXBUF << 8;\
SPI_TXBUF = 0;\
SPI_WAITFOREORx();\
x |= SPI_RXBUF;\
} while (0)
#define FASTSPI_TX_ADDR(a)\
do {\
SPI_TXBUF = a;\
SPI_WAITFOREOTx();\
} while (0)
#define FASTSPI_RX_ADDR(a)\
do {\
SPI_TXBUF = (a) | 0x40;\
SPI_WAITFOREOTx();\
} while (0)
/***********************************************************
FAST SPI: Register access
***********************************************************/
// s = command strobe
// a = register address
// v = register value
#define FASTSPI_STROBE(s) \
do {\
SPI_ENABLE();\
FASTSPI_TX_ADDR(s);\
SPI_DISABLE();\
} while (0)
#define FASTSPI_SETREG(a,v)\
do {\
SPI_ENABLE();\
FASTSPI_TX_ADDR(a);\
FASTSPI_TX((u8_t) ((v) >> 8));\
FASTSPI_TX((u8_t) (v));\
SPI_WAITFORTx_ENDED();\
SPI_DISABLE();\
} while (0)
#define FASTSPI_GETREG(a,v)\
do {\
SPI_ENABLE();\
FASTSPI_RX_ADDR(a);\
v= (u8_t)SPI_RXBUF;\
FASTSPI_RX_WORD(v);\
clock_delay(1);\
SPI_DISABLE();\
} while (0)
// Updates the SPI status byte
#define FASTSPI_UPD_STATUS(s)\
do {\
SPI_ENABLE();\
SPI_TXBUF = CC2420_SNOP;\
SPI_WAITFOREOTx();\
s = SPI_RXBUF;\
SPI_DISABLE();\
} while (0)
/***********************************************************
FAST SPI: FIFO Access
***********************************************************/
// p = pointer to the byte array to be read/written
// c = the number of bytes to read/write
// b = single data byte
#define FASTSPI_WRITE_FIFO(p,c)\
do {\
SPI_ENABLE();\
u8_t i;\
FASTSPI_TX_ADDR(CC2420_TXFIFO);\
for (i = 0; i < (c); i++) {\
FASTSPI_TX(((u8_t*)(p))[i]);\
}\
SPI_WAITFORTx_ENDED();\
SPI_DISABLE();\
} while (0)
#define FASTSPI_WRITE_FIFO_NOCE(p,c)\
do {\
FASTSPI_TX_ADDR(CC2420_TXFIFO);\
for (u8_t spiCnt = 0; spiCnt < (c); spiCnt++) {\
FASTSPI_TX(((u8_t*)(p))[spiCnt]);\
}\
SPI_WAITFORTx_ENDED();\
} while (0)
#define FASTSPI_READ_FIFO_BYTE(b)\
do {\
SPI_ENABLE();\
FASTSPI_RX_ADDR(CC2420_RXFIFO);\
(void)SPI_RXBUF;\
FASTSPI_RX(b);\
clock_delay(1);\
SPI_DISABLE();\
} while (0)
#define FASTSPI_READ_FIFO_NO_WAIT(p,c)\
do {\
u8_t spiCnt;\
SPI_ENABLE();\
FASTSPI_RX_ADDR(CC2420_RXFIFO);\
(void)SPI_RXBUF;\
for (spiCnt = 0; spiCnt < (c); spiCnt++) {\
FASTSPI_RX(((u8_t*)(p))[spiCnt]);\
}\
clock_delay(1);\
SPI_DISABLE();\
} while (0)
#define FASTSPI_READ_FIFO_GARBAGE(c)\
do {\
u8_t spiCnt;\
SPI_ENABLE();\
FASTSPI_RX_ADDR(CC2420_RXFIFO);\
(void)SPI_RXBUF;\
for (spiCnt = 0; spiCnt < (c); spiCnt++) {\
FASTSPI_RX_GARBAGE();\
}\
clock_delay(1);\
SPI_DISABLE();\
} while (0)
/***********************************************************
FAST SPI: CC2420 RAM access (big or little-endian order)
***********************************************************/
// FAST SPI: CC2420 RAM access (big or little-endian order)
// p = pointer to the variable to be written
// a = the CC2420 RAM address
// c = the number of bytes to write
// n = counter variable which is used in for/while loops (u8_t)
//
// Example of usage:
// u8_t n;
// u16_t shortAddress = 0xBEEF;
// FASTSPI_WRITE_RAM_LE(&shortAddress, CC2420RAM_SHORTADDR, 2);
#define FASTSPI_WRITE_RAM_LE(p,a,c,n)\
do {\
SPI_ENABLE();\
FASTSPI_TX(0x80 | (a & 0x7F));\
FASTSPI_TX((a >> 1) & 0xC0);\
for (n = 0; n < (c); n++) {\
FASTSPI_TX(((u8_t*)(p))[n]);\
}\
SPI_WAITFORTx_ENDED();\
SPI_DISABLE();\
} while (0)
#define FASTSPI_WRITE_RAM_BE(p,a,c,n) \
do { \
SPI_ENABLE(); \
FASTSPI_TX(0x80 | (a & 0x7F)); \
FASTSPI_TX((a >> 1) & 0xC0); \
for (n = (c); n > 0; n--) { \
FASTSPI_TX(((uint8_t *)(p))[n - 1]); \
} \
SPI_WAITFORTx_ENDED(); \
SPI_DISABLE(); \
} while (0)
#define FASTSPI_READ_RAM_LE(p,a,c,n)\
do {\
SPI_ENABLE();\
FASTSPI_TX(0x80 | (a & 0x7F));\
FASTSPI_TX(((a >> 1) & 0xC0) | 0x20);\
SPI_WAITFORTx_ENDED();\
SPI_RXBUF;\
for (n = 0; n < (c); n++) {\
FASTSPI_RX(((u8_t*)(p))[n]);\
}\
SPI_DISABLE();\
} while (0)
#endif /* SPI_H */