more protection against interrupts that might spoil SPI sequences.

made coding style more like that of contiki.
This commit is contained in:
nvt-se 2009-05-26 12:15:46 +00:00
parent f39d2bd4c6
commit e9d279620f
6 changed files with 195 additions and 176 deletions

View file

@ -47,9 +47,9 @@ Berlin, 2007
* @brief MMC-/SD-Card library * @brief MMC-/SD-Card library
* *
* @author Michael Baar <baar@inf.fu-berlin.de> * @author Michael Baar <baar@inf.fu-berlin.de>
* @version $Revision: 1.7 $ * @version $Revision: 1.8 $
* *
* $Id: sd.c,v 1.7 2009/05/25 13:19:04 nvt-se Exp $ * $Id: sd.c,v 1.8 2009/05/26 12:15:46 nvt-se Exp $
* *
* Initialisation and basic functions for read and write access * Initialisation and basic functions for read and write access
*/ */
@ -88,40 +88,40 @@ sd_init_card(sd_cache_t * pCache)
int resetcnt; int resetcnt;
struct sd_response_r3 r3; struct sd_response_r3 r3;
if (!sd_detected()) { if(!sd_detected()) {
return SD_INIT_NOCARD; return SD_INIT_NOCARD;
} }
if (sd_state.Flags & SD_INITIALIZED) { if(sd_state.Flags & SD_INITIALIZED) {
return SD_INIT_SUCCESS; return SD_INIT_SUCCESS;
} }
// Wait for UART and switch to SPI mode // Wait for UART and switch to SPI mode
if (!uart_lock_wait(UART_MODE_SPI)) { if(!uart_lock_wait(UART_MODE_SPI)) {
return SD_INIT_FAILED; return SD_INIT_FAILED;
} }
// reset card // reset card
resetcnt = _sd_reset(&r3); resetcnt = _sd_reset(&r3);
if (resetcnt >= SD_RESET_RETRY_COUNT) { if(resetcnt >= SD_RESET_RETRY_COUNT) {
ret = SD_INIT_FAILED; ret = SD_INIT_FAILED;
goto sd_init_card_fail; goto sd_init_card_fail;
} }
// Test for hardware compatibility // Test for hardware compatibility
if ((r3.ocr & SD_V_MASK) != SD_V_MASK) { if((r3.ocr & SD_V_MASK) != SD_V_MASK) {
ret = SD_INIT_NOTSUPP; ret = SD_INIT_NOTSUPP;
goto sd_init_card_fail; goto sd_init_card_fail;
} }
// Test for software compatibility // Test for software compatibility
if (!_sd_read_register(&csd, SD_CMD_SEND_CSD, sizeof (struct sd_csd))) { if(!_sd_read_register(&csd, SD_CMD_SEND_CSD, sizeof (struct sd_csd))) {
ret = SD_INIT_FAILED; ret = SD_INIT_FAILED;
goto sd_init_card_fail; goto sd_init_card_fail;
} }
ccc = SD_CSD_CCC(csd); ccc = SD_CSD_CCC(csd);
if ((ccc & SD_DEFAULT_MINCCC) != SD_DEFAULT_MINCCC) { if((ccc & SD_DEFAULT_MINCCC) != SD_DEFAULT_MINCCC) {
ret = SD_INIT_NOTSUPP; ret = SD_INIT_NOTSUPP;
goto sd_init_card_fail; goto sd_init_card_fail;
} }
@ -135,19 +135,19 @@ sd_init_card_fail:
LOG_VERBOSE("(sd_init) result:%u, resetcnt:%i OCR:%.8lx, CCC:%.4x", LOG_VERBOSE("(sd_init) result:%u, resetcnt:%i OCR:%.8lx, CCC:%.4x",
ret, resetcnt, r3.ocr, ccc); ret, resetcnt, r3.ocr, ccc);
#endif #endif
if (ret != SD_INIT_SUCCESS) { if(ret != SD_INIT_SUCCESS) {
return ret; return ret;
} }
// state // state
sd_state.MinBlockLen_bit = 9; sd_state.MinBlockLen_bit = 9;
sd_state.MaxBlockLen_bit = SD_CSD_READ_BL_LEN(csd); sd_state.MaxBlockLen_bit = SD_CSD_READ_BL_LEN(csd);
sd_state.Flags = SD_INITIALIZED; sd_state.Flags = SD_INITIALIZED;
if (SD_CSD_READ_PARTIAL(csd)) { if(SD_CSD_READ_PARTIAL(csd)) {
sd_state.MinBlockLen_bit = 0; sd_state.MinBlockLen_bit = 0;
sd_state.Flags |= SD_READ_PARTIAL; sd_state.Flags |= SD_READ_PARTIAL;
} }
if (SD_CSD_WRITE_PARTIAL(csd)) { if(SD_CSD_WRITE_PARTIAL(csd)) {
sd_state.Flags |= SD_WRITE_PARTIAL; sd_state.Flags |= SD_WRITE_PARTIAL;
} }
@ -155,7 +155,7 @@ sd_init_card_fail:
sd_state.BlockLen = 1 << 9; sd_state.BlockLen = 1 << 9;
#if SD_CACHE #if SD_CACHE
if (pCache == NULL) { if(pCache == NULL) {
return SD_INIT_NOTSUPP; return SD_INIT_NOTSUPP;
} }
sd_state.Cache = pCache; sd_state.Cache = pCache;
@ -169,7 +169,7 @@ sd_init_card_fail:
void void
sd_flush(void) sd_flush(void)
{ {
if (uart_lock(UART_MODE_SPI)) { if(uart_lock(UART_MODE_SPI)) {
#if SD_WRITE && SD_CACHE #if SD_WRITE && SD_CACHE
_sd_cache_flush(); _sd_cache_flush();
#endif #endif
@ -198,22 +198,22 @@ sd_set_blocklength(const uint8_t blocklength_bit)
uint8_t arg[4]; uint8_t arg[4];
// test if already set // test if already set
if (blocklength_bit == sd_state.BlockLen_bit) { if(blocklength_bit == sd_state.BlockLen_bit) {
return sd_state.BlockLen_bit; return sd_state.BlockLen_bit;
} }
// Wait for UART and switch to SPI mode // Wait for UART and switch to SPI mode
if (!uart_lock_wait(UART_MODE_SPI)) { if(!uart_lock_wait(UART_MODE_SPI)) {
return sd_state.BlockLen_bit; return sd_state.BlockLen_bit;
} }
((uint16_t *) arg)[1] = 0; ((uint16_t *)arg)[1] = 0;
((uint16_t *) arg)[0] = 1 << blocklength_bit; ((uint16_t *)arg)[0] = 1 << blocklength_bit;
// set blocklength command // set blocklength command
if (_sd_send_cmd(SD_CMD_SET_BLOCKLENGTH, SD_RESPONSE_SIZE_R1, arg, NULL)) { if(_sd_send_cmd(SD_CMD_SET_BLOCKLENGTH, SD_RESPONSE_SIZE_R1, arg, NULL)) {
sd_state.BlockLen_bit = blocklength_bit; sd_state.BlockLen_bit = blocklength_bit;
sd_state.BlockLen = ((uint16_t *) arg)[0]; sd_state.BlockLen = ((uint16_t *)arg)[0];
ret = blocklength_bit; ret = blocklength_bit;
} else { } else {
ret = SD_BLOCKLENGTH_INVALID; ret = SD_BLOCKLENGTH_INVALID;
@ -231,10 +231,10 @@ sd_set_blocklength(const uint8_t blocklength_bit)
// Public functions, Reading // Public functions, Reading
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
uint16_t uint16_t
sd_AlignAddress(uint32_t * pAddress) sd_align_address(uint32_t * pAddress)
{ {
uint16_t blMask = sd_state.BlockLen - 1; uint16_t blMask = sd_state.BlockLen - 1;
uint16_t *lw = (uint16_t *) pAddress; uint16_t *lw = (uint16_t *)pAddress;
uint16_t offset = *lw & blMask; uint16_t offset = *lw & blMask;
*lw &= ~blMask; *lw &= ~blMask;
@ -246,7 +246,12 @@ sd_AlignAddress(uint32_t * pAddress)
uint16_t uint16_t
sd_read_block(void (*const pBuffer), const uint32_t address) sd_read_block(void (*const pBuffer), const uint32_t address)
{ {
if (!_sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address)) { int s;
s = splhigh();
if(!_sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address)) {
splx(s);
return FALSE; return FALSE;
} }
@ -255,6 +260,8 @@ sd_read_block(void (*const pBuffer), const uint32_t address)
// receive CRC16 and finish // receive CRC16 and finish
_sd_read_stop(2); _sd_read_stop(2);
splx(s);
return sd_state.BlockLen; return sd_state.BlockLen;
} }
@ -263,21 +270,21 @@ sd_read_block(void (*const pBuffer), const uint32_t address)
bool bool
sd_read_byte(void *pBuffer, const uint32_t address) sd_read_byte(void *pBuffer, const uint32_t address)
{ {
if (sd_set_blocklength(0) == 0) { if(sd_set_blocklength(0) == 0) {
return sd_read_block(pBuffer, address); return sd_read_block(pBuffer, address);
} else { } else {
uint32_t blAdr = address; uint32_t blAdr = address;
uint16_t offset; // bytes from aligned address to start of first byte to keep uint16_t offset; // bytes from aligned address to start of first byte to keep
// align // align
offset = sd_AlignAddress(&blAdr); offset = sd_align_address(&blAdr);
// start // start
if (!_sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address)) { if(!_sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address)) {
return FALSE; return FALSE;
} }
// read // read
Spi_read(pBuffer, offset + 1, FALSE); sdspi_read(pBuffer, offset + 1, FALSE);
// done // done
_sd_read_stop(sd_state.BlockLen - offset - 1); _sd_read_stop(sd_state.BlockLen - offset - 1);
@ -301,20 +308,20 @@ sd_read(void *pBuffer, unsigned long address, unsigned int size)
// //
// parameter processing // parameter processing
// //
if (size == 0) { if(size == 0) {
return FALSE; return 0;
} }
// align to block // align to block
offset = sd_AlignAddress(&address); offset = sd_align_address(&address);
if ((offset == 0) && (sd_state.BlockLen == size)) { if((offset == 0) && (sd_state.BlockLen == size)) {
// best case: perfectly block aligned, no chunking // best case: perfectly block aligned, no chunking
// -> do shortcut // -> do shortcut
return sd_read_block(pBuffer, address); return sd_read_block(pBuffer, address);
} }
// calculate first block // calculate first block
if (size > sd_state.BlockLen) { if(size > sd_state.BlockLen) {
read_count = sd_state.BlockLen; read_count = sd_state.BlockLen;
} else { } else {
read_count = size; read_count = size;
@ -323,16 +330,20 @@ sd_read(void *pBuffer, unsigned long address, unsigned int size)
// Data transfer // Data transfer
// //
s = splhigh(s);
// request data transfer // request data transfer
ret = _sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address); ret = _sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address);
if(!ret) {
RETF(ret); splx(s);
return 0;
}
// run to offset // run to offset
if (offset) { if(offset) {
sdspi_read(pBuffer, offset, FALSE); // dump till offset sdspi_read(pBuffer, offset, FALSE); // dump till offset
dump_flag = ((read_count + offset) < sd_state.BlockLen); dump_flag = ((read_count + offset) < sd_state.BlockLen);
if (!dump_flag) { if(!dump_flag) {
read_count = sd_state.BlockLen - offset; // max bytes to read from first block read_count = sd_state.BlockLen - offset; // max bytes to read from first block
} }
} else { } else {
@ -356,18 +367,18 @@ sd_read(void *pBuffer, unsigned long address, unsigned int size)
num_bytes_read += read_count; num_bytes_read += read_count;
// finish block // finish block
if (dump_flag) { if(dump_flag) {
// cancel remaining bytes (last iteration) // cancel remaining bytes (last iteration)
_sd_read_stop(sd_state.BlockLen - read_count - offset); _sd_read_stop(sd_state.BlockLen - read_count - offset);
break; break;
// unselect is included in send_cmd // unselect is included in send_cmd
} else { } else {
sdspi_idle(2); // receive CRC16 sdspi_idle(2); // receive CRC16
if (size != 0) { if(size != 0) {
// address calculation for next block // address calculation for next block
offset = 0; offset = 0;
address += sd_state.BlockLen; address += sd_state.BlockLen;
if (size > sd_state.BlockLen) { if(size > sd_state.BlockLen) {
read_count = sd_state.BlockLen; read_count = sd_state.BlockLen;
dump_flag = FALSE; dump_flag = FALSE;
} else { } else {
@ -377,14 +388,19 @@ sd_read(void *pBuffer, unsigned long address, unsigned int size)
sdspi_unselect(); sdspi_unselect();
ret = _sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address); ret = _sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address);
RETF(ret); if(!ret) {
splx(s);
return 0;
}
} else { } else {
// finished // finished
_sd_read_stop(0); _sd_read_stop(0);
break; break;
} }
} }
} while (1); } while(1);
splx(s);
return num_bytes_read; return num_bytes_read;
} }
@ -409,16 +425,16 @@ _sd_write_finish(void)
sdspi_dma_lock = FALSE; sdspi_dma_lock = FALSE;
#endif #endif
s = splhigh();
// dummy crc // dummy crc
sdspi_idle(2); sdspi_idle(2);
s = splhigh();
// receive data response (ZZS___ 3 bits crc response) // receive data response (ZZS___ 3 bits crc response)
for (i = 0; i < SD_TIMEOUT_NCR; i++) { for(i = 0; i < SD_TIMEOUT_NCR; i++) {
ret = sdspi_rx(); ret = sdspi_rx();
if ((ret > 0) && (ret < 0xFF)) { if((ret > 0) && (ret < 0xFF)) {
while (ret & 0x80) { while(ret & 0x80) {
ret <<= 1; ret <<= 1;
} }
ret = ((ret & 0x70) == 0x20); ret = ((ret & 0x70) == 0x20);
@ -426,17 +442,16 @@ _sd_write_finish(void)
} }
} }
splx(s);
// wait for data to be written // wait for data to be written
_sd_wait_standby(NULL); _sd_wait_standby(NULL);
splx(s);
sdspi_unselect(); sdspi_unselect();
if (ret) { if(ret) {
// data transfer to sd card buffer was successful // data transfer to sd card buffer was successful
// query for result of actual write operation // query for result of actual write operation
ret = _sd_send_cmd(SD_CMD_SEND_STATUS, SD_RESPONSE_SIZE_R2, NULL, &r2); ret = _sd_send_cmd(SD_CMD_SEND_STATUS, SD_RESPONSE_SIZE_R2, NULL, &r2);
if (ret && (r2 == 0)) { if(ret && (r2 == 0)) {
result = SD_WRITE_SUCCESS; result = SD_WRITE_SUCCESS;
} }
} else { } else {
@ -454,7 +469,7 @@ enum sd_write_ret
sd_write_flush(void) sd_write_flush(void)
{ {
#if SPI_DMA_WRITE #if SPI_DMA_WRITE
if (!sdspi_dma_lock) { if(!sdspi_dma_lock) {
return SD_WRITE_DMA_ERR; return SD_WRITE_DMA_ERR;
} else { } else {
return _sd_write_finish(); return _sd_write_finish();
@ -472,12 +487,12 @@ _sd_write_block(const uint32_t * pAddress, const void *pBuffer, int increment)
int s; int s;
// block write-access on write protection // block write-access on write protection
if (sd_protected()) { if(sd_protected()) {
return SD_WRITE_PROTECTED_ERR; return SD_WRITE_PROTECTED_ERR;
} }
// acquire uart // acquire uart
if (!uart_lock_wait(UART_MODE_SPI)) { if(!uart_lock_wait(UART_MODE_SPI)) {
return SD_WRITE_INTERFACE_ERR; return SD_WRITE_INTERFACE_ERR;
} }
@ -486,7 +501,7 @@ _sd_write_block(const uint32_t * pAddress, const void *pBuffer, int increment)
r1 = 0; r1 = 0;
ret = _sd_send_cmd(SD_CMD_WRITE_SINGLE_BLOCK, SD_RESPONSE_SIZE_R1, ret = _sd_send_cmd(SD_CMD_WRITE_SINGLE_BLOCK, SD_RESPONSE_SIZE_R1,
pAddress, &r1); pAddress, &r1);
if (!ret || r1) { if(!ret || r1) {
leds_on(LEDS_ALL); leds_on(LEDS_ALL);
_sd_reset(NULL); _sd_reset(NULL);
uart_unlock(UART_MODE_SPI); uart_unlock(UART_MODE_SPI);
@ -494,21 +509,23 @@ _sd_write_block(const uint32_t * pAddress, const void *pBuffer, int increment)
return SD_WRITE_COMMAND_ERR; return SD_WRITE_COMMAND_ERR;
} }
// write data // write data
sdspi_select();
s = splhigh(); s = splhigh();
sdspi_select();
sdspi_tx(0xFF); sdspi_tx(0xFF);
sdspi_tx(SD_TOKEN_WRITE); sdspi_tx(SD_TOKEN_WRITE);
sdspi_write(pBuffer, sd_state.BlockLen, increment); sdspi_write(pBuffer, sd_state.BlockLen, increment);
splx(s);
SD_LED_WRITE_OFF; SD_LED_WRITE_OFF;
// finish write // finish write
#if SPI_DMA_WRITE #if SPI_DMA_WRITE
sdspi_dma_lock = TRUE; sdspi_dma_lock = TRUE;
splx(s);
return SD_WRITE_SUCCESS; return SD_WRITE_SUCCESS;
#else #else
return _sd_write_finish(); ret = _sd_write_finish();
splx(s);
return ret;
#endif #endif
} }
@ -546,7 +563,7 @@ inline bool _sd_get_op_cond(struct sd_response_r1 * pResponse)
ret = _sd_send_cmd(SD_CMD_APP_SECIFIC_CMD, SD_RESPONSE_SIZE_R1, NULL, ret = _sd_send_cmd(SD_CMD_APP_SECIFIC_CMD, SD_RESPONSE_SIZE_R1, NULL,
pResponse); pResponse);
if (ret) { if(ret) {
uint32_t arg = SD_V_MASK; uint32_t arg = SD_V_MASK;
ret = _sd_send_cmd(SD_ACMD_SEND_OP_COND, SD_RESPONSE_SIZE_R1, &arg, ret = _sd_send_cmd(SD_ACMD_SEND_OP_COND, SD_RESPONSE_SIZE_R1, &arg,
pResponse); pResponse);
@ -554,7 +571,7 @@ inline bool _sd_get_op_cond(struct sd_response_r1 * pResponse)
// MMC style init // MMC style init
ret = _sd_send_cmd(SD_CMD_SEND_OP_COND, SD_RESPONSE_SIZE_R1, NULL, ret = _sd_send_cmd(SD_CMD_SEND_OP_COND, SD_RESPONSE_SIZE_R1, NULL,
pResponse); pResponse);
if (*((uint8_t *) pResponse) & SD_R1_ERROR_MASK) { if(*((uint8_t *)pResponse) & SD_R1_ERROR_MASK) {
ret = FALSE; ret = FALSE;
} }
} }
@ -574,7 +591,7 @@ _sd_wait_standby(struct sd_response_r3 * pOpCond)
struct sd_response_r3 opCond; struct sd_response_r3 opCond;
struct sd_response_r3 *pR3 = pOpCond; struct sd_response_r3 *pR3 = pOpCond;
if (pR3 == NULL) { if(pR3 == NULL) {
pR3 = &opCond; pR3 = &opCond;
} }
@ -582,14 +599,14 @@ _sd_wait_standby(struct sd_response_r3 * pOpCond)
do { do {
ret = _sd_get_op_cond((struct sd_response_r1 *)pR3); ret = _sd_get_op_cond((struct sd_response_r1 *)pR3);
if (ret && (pR3->r1.in_idle_state == 0)) { if(ret && (pR3->r1.in_idle_state == 0)) {
ret = _sd_send_cmd(SD_CMD_READ_OCR, SD_RESPONSE_SIZE_R3, NULL, pR3); ret = _sd_send_cmd(SD_CMD_READ_OCR, SD_RESPONSE_SIZE_R3, NULL, pR3);
if (ret && !SD_OCR_BUSY(pR3->ocr)) { if(ret && !SD_OCR_BUSY(pR3->ocr)) {
return TRUE; return TRUE;
} }
} }
i--; i--;
} while (i); } while(i);
return FALSE; return FALSE;
} }
@ -605,13 +622,13 @@ _sd_reset(struct sd_response_r3 *pOpCond)
bool ret; bool ret;
struct sd_response_r1 r1; struct sd_response_r1 r1;
for (i = 0; i < SD_RESET_RETRY_COUNT; i++) { for(i = 0; i < SD_RESET_RETRY_COUNT; i++) {
ret = _sd_send_cmd(SD_CMD_GO_IDLE_STATE, SD_RESPONSE_SIZE_R1, NULL, &r1); ret = _sd_send_cmd(SD_CMD_GO_IDLE_STATE, SD_RESPONSE_SIZE_R1, NULL, &r1);
if (ret == 0 || r1.illegal_cmd) { if(ret == 0 || r1.illegal_cmd) {
_sd_send_cmd(SD_CMD_STOP_TRANSMISSION, SD_RESPONSE_SIZE_R1, NULL, &r1); _sd_send_cmd(SD_CMD_STOP_TRANSMISSION, SD_RESPONSE_SIZE_R1, NULL, &r1);
} else { } else {
ret = _sd_wait_standby(pOpCond); ret = _sd_wait_standby(pOpCond);
if (ret) { if(ret) {
break; break;
} }
} }
@ -642,11 +659,11 @@ _sd_send_cmd(const uint8_t command,
sdspi_select(); sdspi_select();
cmd[0] |= command; cmd[0] |= command;
if (pArg != NULL) { if(pArg != NULL) {
cmd[1] = ((uint8_t *) pArg)[3]; cmd[1] = ((uint8_t *)pArg)[3];
cmd[2] = ((uint8_t *) pArg)[2]; cmd[2] = ((uint8_t *)pArg)[2];
cmd[3] = ((uint8_t *) pArg)[1]; cmd[3] = ((uint8_t *)pArg)[1];
cmd[4] = ((uint8_t *) pArg)[0]; cmd[4] = ((uint8_t *)pArg)[0];
} }
s = splhigh(); s = splhigh();
@ -656,10 +673,10 @@ _sd_send_cmd(const uint8_t command,
i = SD_TIMEOUT_NCR; i = SD_TIMEOUT_NCR;
do { do {
data = sdspi_rx(); data = sdspi_rx();
if ((data & 0x80) == 0) { if((data & 0x80) == 0) {
goto _sd_send_cmd_response; goto _sd_send_cmd_response;
} }
} while (i--); } while(i--);
splx(s); splx(s);
@ -669,17 +686,17 @@ _sd_send_cmd_response:
s = splhigh(); s = splhigh();
// start bit received, read response with size i // start bit received, read response with size i
i = response_size - 1; i = response_size - 1;
if (pResponse != NULL) { if(pResponse != NULL) {
// copy response to response buffer // copy response to response buffer
do { do {
((uint8_t *) pResponse)[i] = data; ((uint8_t *)pResponse)[i] = data;
if (i == 0) { if(i == 0) {
break; break;
} }
data = sdspi_rx(); data = sdspi_rx();
i--; i--;
} while (1); } while(1);
} else { } else {
// receive and ignore response // receive and ignore response
sdspi_read(&data, i, 0); sdspi_read(&data, i, 0);
@ -706,7 +723,7 @@ sd_send_cmd_fail:
uint16_t uint16_t
_sd_read_register(void *pBuffer, uint8_t cmd, uint16_t size) _sd_read_register(void *pBuffer, uint8_t cmd, uint16_t size)
{ {
if (!_sd_read_start(cmd, 0)) { if(!_sd_read_start(cmd, 0)) {
return FALSE; return FALSE;
} }
@ -728,12 +745,12 @@ _sd_read_start(uint8_t cmd, uint32_t address)
uint16_t i; uint16_t i;
// aquire uart // aquire uart
if (!uart_lock_wait(UART_MODE_SPI)) { if(!uart_lock_wait(UART_MODE_SPI)) {
return FALSE; return FALSE;
} }
ret = _sd_send_cmd(cmd, SD_RESPONSE_SIZE_R1, &address, &r1); ret = _sd_send_cmd(cmd, SD_RESPONSE_SIZE_R1, &address, &r1);
if (!ret || r1) { if(!ret || r1) {
goto _sd_read_start_fail; goto _sd_read_start_fail;
} }
@ -742,7 +759,7 @@ _sd_read_start(uint8_t cmd, uint32_t address)
i = sdspi_wait_token(0xFF, 0xFF, SD_TOKEN_READ, SD_TIMEOUT_READ); i = sdspi_wait_token(0xFF, 0xFF, SD_TOKEN_READ, SD_TIMEOUT_READ);
if (i < SD_TIMEOUT_READ) { if(i < SD_TIMEOUT_READ) {
// token received, data bytes follow // token received, data bytes follow
SD_LED_READ_ON; SD_LED_READ_ON;
@ -773,7 +790,7 @@ void
_sd_read_stop(uint16_t count) _sd_read_stop(uint16_t count)
{ {
// finish block + crc // finish block + crc
if (count) { if(count) {
uint8_t dump; uint8_t dump;
sdspi_read(&dump, count + 2, FALSE); sdspi_read(&dump, count + 2, FALSE);
@ -783,7 +800,7 @@ _sd_read_stop(uint16_t count)
SD_LED_READ_OFF; SD_LED_READ_OFF;
// wait for switch to standby mode // wait for switch to standby mode
if (!_sd_wait_standby(NULL)) { if(!_sd_wait_standby(NULL)) {
_sd_reset(NULL); _sd_reset(NULL);
} }

View file

@ -46,9 +46,9 @@ Berlin, 2007
* @brief MMC-/SD-Card library, Public interface * @brief MMC-/SD-Card library, Public interface
* *
* @author Michael Baar <baar@inf.fu-berlin.de> * @author Michael Baar <baar@inf.fu-berlin.de>
* @version $Revision: 1.5 $ * @version $Revision: 1.6 $
* *
* $Id: sd.h,v 1.5 2008/11/10 14:32:49 nvt-se Exp $ * $Id: sd.h,v 1.6 2009/05/26 12:15:46 nvt-se Exp $
*/ */
/** /**
@ -224,7 +224,7 @@ void sd_close(void);
* 2^n value, where n shall be between 0 and 11. * 2^n value, where n shall be between 0 and 11.
* Be aware that a card may or may not support different blocksizes. * Be aware that a card may or may not support different blocksizes.
* *
* Since all read and write operations have to use blockaligned addresses * Since all read and write operations have to use block-aligned addresses
* and need to process complete blocks always try to use the optimal blocksize * and need to process complete blocks always try to use the optimal blocksize
* and let ::sd_read do the rest. If the blocklength is already set to the new * and let ::sd_read do the rest. If the blocklength is already set to the new
* value nothing is done. * value nothing is done.
@ -251,7 +251,7 @@ void sd_close(void);
* @param[in,out] pAddress address to align, will be modified to be block aligned * @param[in,out] pAddress address to align, will be modified to be block aligned
* @return Offset from aligned address to original address * @return Offset from aligned address to original address
*/ */
uint16_t sd_AlignAddress(uint32_t * pAddress); uint16_t sd_align_address(uint32_t * pAddress);
/** /**
* @brief Read one complete block from a block aligned address into buffer * @brief Read one complete block from a block aligned address into buffer

View file

@ -47,9 +47,9 @@ Berlin, 2007
* @brief MMC-/SD-Card library, cached read and write * @brief MMC-/SD-Card library, cached read and write
* *
* @author Michael Baar <baar@inf.fu-berlin.de> * @author Michael Baar <baar@inf.fu-berlin.de>
* @version $Revision: 1.4 $ * @version $Revision: 1.5 $
* *
* $Id: sd_cache.c,v 1.4 2008/03/31 14:32:00 nvt-se Exp $ * $Id: sd_cache.c,v 1.5 2009/05/26 12:15:46 nvt-se Exp $
*/ */
@ -69,7 +69,7 @@ _sd_cache_init(void)
sd_state.Cache->address = 1; sd_state.Cache->address = 1;
sd_state.Cache->state = 0; sd_state.Cache->state = 0;
// pre-read first block /* pre-read first block */
sd_cache_read_block(&addr); sd_cache_read_block(&addr);
SD_FREE_LOCK(sd_state.Cache); SD_FREE_LOCK(sd_state.Cache);
} }
@ -79,7 +79,7 @@ _sd_cache_flush(void)
{ {
#if SD_WRITE #if SD_WRITE
SD_GET_LOCK(sd_state.Cache); SD_GET_LOCK(sd_state.Cache);
if (sd_state.Cache->state & SD_CACHE_DIRTY) { if(sd_state.Cache->state & SD_CACHE_DIRTY) {
sd_set_blocklength(SD_WRITE_BLOCKLENGTH_BIT); sd_set_blocklength(SD_WRITE_BLOCKLENGTH_BIT);
sd_write_block(sd_state.Cache->address, sd_state.Cache->buffer); sd_write_block(sd_state.Cache->address, sd_state.Cache->buffer);
sd_state.Cache->state &= ~SD_CACHE_DIRTY; sd_state.Cache->state &= ~SD_CACHE_DIRTY;
@ -89,17 +89,17 @@ _sd_cache_flush(void)
} }
sd_cache_t * sd_cache_t *
sd_cache_read_block(const uint32_t * pblAdr) sd_cache_read_block(const uint32_t *pblAdr)
{ {
SD_GET_LOCK(sd_state.Cache); SD_GET_LOCK(sd_state.Cache);
if (sd_state.Cache->address != *pblAdr) { if(sd_state.Cache->address != *pblAdr) {
sd_set_blocklength(SD_WRITE_BLOCKLENGTH_BIT); sd_set_blocklength(SD_WRITE_BLOCKLENGTH_BIT);
if (sd_state.Cache->state & SD_CACHE_DIRTY) { if(sd_state.Cache->state & SD_CACHE_DIRTY) {
sd_write_block(sd_state.Cache->address, sd_state.Cache->buffer); sd_write_block(sd_state.Cache->address, sd_state.Cache->buffer);
sd_state.Cache->state &= ~SD_CACHE_DIRTY; sd_state.Cache->state &= ~SD_CACHE_DIRTY;
} }
sd_state.Cache->address = *pblAdr; sd_state.Cache->address = *pblAdr;
if (!sd_read_block(sd_state.Cache->buffer, *pblAdr)) { if(!sd_read_block(sd_state.Cache->buffer, *pblAdr)) {
SD_FREE_LOCK(sd_state.Cache); SD_FREE_LOCK(sd_state.Cache);
return NULL; return NULL;
} }
@ -111,27 +111,27 @@ sd_cache_read_block(const uint32_t * pblAdr)
uint16_t uint16_t
sd_read(void *pBuffer, uint32_t address, uint16_t size) sd_read(void *pBuffer, uint32_t address, uint16_t size)
{ {
uint16_t offset; // bytes from aligned address to start of first byte to keep uint16_t offset; /* bytes from aligned address to start of first byte to keep */
char *p; // pointer to current pos in receive buffer char *p; /* pointer to current pos in receive buffer */
uint16_t bytes_left; // num bytes to read uint16_t bytes_left; /* num bytes to read */
uint16_t read_count; // num bytes to read from current block uint16_t read_count; /* num bytes to read from current block */
// parameter processing /* parameter processing */
p = (char *)pBuffer; p = (char *)pBuffer;
bytes_left = size; bytes_left = size;
// align to block /* align to block */
offset = sd_AlignAddress(&address); offset = sd_align_address(&address);
// Data transfer /* Data transfer */
do { do {
// calculate block /* calculate block */
if ((offset == 0) && (bytes_left >= sd_state.BlockLen)) { if((offset == 0) && (bytes_left >= sd_state.BlockLen)) {
read_count = sd_state.BlockLen; read_count = sd_state.BlockLen;
sd_read_block(p, address); sd_read_block(p, address);
} else { } else {
sd_cache_read_block(&address); sd_cache_read_block(&address);
read_count = bytes_left + offset; read_count = bytes_left + offset;
if (read_count > sd_state.BlockLen) { if(read_count > sd_state.BlockLen) {
read_count = sd_state.BlockLen - offset; read_count = sd_state.BlockLen - offset;
} else { } else {
read_count = bytes_left; read_count = bytes_left;
@ -142,43 +142,43 @@ sd_read(void *pBuffer, uint32_t address, uint16_t size)
} }
bytes_left -= read_count; bytes_left -= read_count;
if (bytes_left == 0) { if(bytes_left == 0) {
return size; return size;
} }
p += read_count; p += read_count;
address += sd_state.BlockLen; address += sd_state.BlockLen;
} while (1); } while(1);
} }
#endif // SD_READ_ANY #endif /* SD_READ_ANY */
#if SD_WRITE #if SD_WRITE
uint16_t uint16_t
sd_write(uint32_t address, void *pBuffer, uint16_t size) sd_write(uint32_t address, void *pBuffer, uint16_t size)
{ {
uint16_t offset; // bytes from aligned address to start of first byte to keep uint16_t offset; /* bytes from aligned address to start of first byte to keep */
char *p; // pointer to current pos in receive buffer char *p; /* pointer to current pos in receive buffer */
uint16_t bytes_left; // num bytes to read uint16_t bytes_left; /* num bytes to read */
uint16_t read_count; // num bytes to read from current block uint16_t read_count; /* num bytes to read from current block */
// parameter processing /* parameter processing */
p = (char *)pBuffer; p = (char *)pBuffer;
bytes_left = size; bytes_left = size;
// align to block /* align to block */
offset = sd_AlignAddress(&address); offset = sd_align_address(&address);
sd_set_blocklength(SD_WRITE_BLOCKLENGTH_BIT); sd_set_blocklength(SD_WRITE_BLOCKLENGTH_BIT);
// Data transfer /* Data transfer */
do { do {
// calculate block /* calculate block */
if ((offset == 0) && (bytes_left >= sd_state.BlockLen)) { if((offset == 0) && (bytes_left >= sd_state.BlockLen)) {
read_count = sd_state.BlockLen; read_count = sd_state.BlockLen;
sd_write_block(address, p); sd_write_block(address, p);
} else { } else {
sd_cache_read_block(&address); sd_cache_read_block(&address);
read_count = bytes_left + offset; read_count = bytes_left + offset;
if (read_count > sd_state.BlockLen) { if(read_count > sd_state.BlockLen) {
read_count = sd_state.BlockLen - offset; read_count = sd_state.BlockLen - offset;
} else { } else {
read_count = bytes_left; read_count = bytes_left;
@ -188,17 +188,17 @@ sd_write(uint32_t address, void *pBuffer, uint16_t size)
SD_FREE_LOCK(sd_state.Cache); SD_FREE_LOCK(sd_state.Cache);
} }
if (bytes_left == 0) { if(bytes_left == 0) {
return size; return size;
} }
p += read_count; p += read_count;
bytes_left -= read_count; bytes_left -= read_count;
address += sd_state.BlockLen; address += sd_state.BlockLen;
} while (1); } while(1);
} }
#endif // SD_WRITE #endif /* SD_WRITE */
#endif // SD_CACHE #endif /* SD_CACHE */
/** @} */ /** @} */

View file

@ -47,9 +47,9 @@ Berlin, 2007
* @brief MMC-/SD-Card library, Block erase * @brief MMC-/SD-Card library, Block erase
* *
* @author Michael Baar <baar@inf.fu-berlin.de> * @author Michael Baar <baar@inf.fu-berlin.de>
* @version $Revision: 1.4 $ * @version $Revision: 1.5 $
* *
* $Id: sd_erase.c,v 1.4 2008/05/27 13:01:27 nvt-se Exp $ * $Id: sd_erase.c,v 1.5 2009/05/26 12:15:46 nvt-se Exp $
*/ */
/** /**
@ -65,17 +65,17 @@ sd_erase_blocks(uint32_t address, uint16_t numBlocks)
uint8_t ret, r1; uint8_t ret, r1;
uint32_t endAdr; uint32_t endAdr;
if (sd_protected()) { if(sd_protected()) {
return FALSE; return FALSE;
} }
if (!uart_lock(UART_MODE_SPI)) { if(!uart_lock(UART_MODE_SPI)) {
return FALSE; return FALSE;
} }
ret = _sd_send_cmd(SD_CMD_ERASE_WR_BLK_START_ADDR, SD_RESPONSE_SIZE_R1, ret = _sd_send_cmd(SD_CMD_ERASE_WR_BLK_START_ADDR, SD_RESPONSE_SIZE_R1,
&address, &r1); &address, &r1);
if (!ret | r1) { if(!ret | r1) {
uart_unlock(UART_MODE_SPI); uart_unlock(UART_MODE_SPI);
return FALSE; return FALSE;
} }
@ -85,7 +85,7 @@ sd_erase_blocks(uint32_t address, uint16_t numBlocks)
ret = _sd_send_cmd(SD_CMD_ERASE_WR_BLK_END_ADDR, SD_RESPONSE_SIZE_R1, ret = _sd_send_cmd(SD_CMD_ERASE_WR_BLK_END_ADDR, SD_RESPONSE_SIZE_R1,
&endAdr, &r1); &endAdr, &r1);
if (!ret | r1) { if(!ret | r1) {
uart_unlock(UART_MODE_SPI); uart_unlock(UART_MODE_SPI);
return FALSE; return FALSE;
} }

View file

@ -47,9 +47,9 @@ Berlin, 2007
* @brief MMC-/SD-Card library, Additional Information * @brief MMC-/SD-Card library, Additional Information
* *
* @author Michael Baar <baar@inf.fu-berlin.de> * @author Michael Baar <baar@inf.fu-berlin.de>
* @version $Revision: 1.3 $ * @version $Revision: 1.4 $
* *
* $Id: sd_info.c,v 1.3 2008/03/28 23:03:05 nvt-se Exp $ * $Id: sd_info.c,v 1.4 2009/05/26 12:15:46 nvt-se Exp $
*/ */
/** /**
@ -70,10 +70,10 @@ sd_get_size(void)
{ {
uint32_t size = 0; uint32_t size = 0;
if (uart_lock(UART_MODE_SPI)) { if(uart_lock(UART_MODE_SPI)) {
struct sd_csd csd; struct sd_csd csd;
if (_sd_read_register(&csd, SD_CMD_SEND_CSD, sizeof (struct sd_csd))) { if(_sd_read_register(&csd, SD_CMD_SEND_CSD, sizeof (struct sd_csd))) {
size = SD_CSD_C_SIZE(csd) + 1; size = SD_CSD_C_SIZE(csd) + 1;
size <<= SD_CSD_C_MULT(csd); size <<= SD_CSD_C_MULT(csd);
size <<= 2; size <<= 2;

View file

@ -47,9 +47,9 @@ Berlin, 2007
* @brief Serial Peripheral Interface for SD library * @brief Serial Peripheral Interface for SD library
* *
* @author Michael Baar <baar@inf.fu-berlin.de> * @author Michael Baar <baar@inf.fu-berlin.de>
* @version $Revision: 1.3 $ * @version $Revision: 1.4 $
* *
* $Id: sdspi.c,v 1.3 2009/05/25 13:19:04 nvt-se Exp $ * $Id: sdspi.c,v 1.4 2009/05/26 12:15:46 nvt-se Exp $
*/ */
#include <msp430x16x.h> #include <msp430x16x.h>
@ -72,7 +72,8 @@ sdspi_init(void)
sdspi_dma_lock = FALSE; sdspi_dma_lock = FALSE;
#endif #endif
/* The 16-bit value of UxBR0+UxBR1 is the division factor of the USART clock /*
* The 16-bit value of UxBR0+UxBR1 is the division factor of the USART clock
* source, BRCLK. The maximum baud rate that can be generated in master * source, BRCLK. The maximum baud rate that can be generated in master
* mode is BRCLK/2. The maximum baud rate that can be generated in slave * mode is BRCLK/2. The maximum baud rate that can be generated in slave
* mode is BRCLK. The modulator in the USART baud rate generator is not used * mode is BRCLK. The modulator in the USART baud rate generator is not used
@ -102,9 +103,10 @@ sdspi_tx(register const uint8_t c)
void void
sdspi_dma_wait(void) sdspi_dma_wait(void)
{ {
while (DMA0CTL & DMAEN) { /* Wait until a previous transfer is complete */
while(DMA0CTL & DMAEN) {
_NOP(); _NOP();
} // Wait until a previous transfer is complete }
} }
#endif #endif
@ -118,44 +120,44 @@ sdspi_read(void *pDestination, const uint16_t size, const bool incDest)
#if SPI_DMA_READ #if SPI_DMA_READ
sdspi_dma_wait(); sdspi_dma_wait();
UART_RESET_RXTX(); // clear interrupts UART_RESET_RXTX(); /* clear interrupts */
// Configure the DMA transfer /* Configure the DMA transfer */
DMA0SA = (uint16_t) & UART_RX; // source DMA address DMA0SA = (uint16_t) & UART_RX; /* source DMA address */
DMA0DA = (uint16_t) pDestination; // destination DMA address DMA0DA = (uint16_t) pDestination; /* destination DMA address */
DMA0SZ = size; // number of bytes to be transferred DMA0SZ = size; /* number of bytes to be transferred */
DMA1SA = (uint16_t) & UART_TX; // source DMA address (constant 0xff) DMA1SA = (uint16_t) & UART_TX; /* source DMA address (constant 0xff) */
DMA1DA = DMA1SA; // destination DMA address DMA1DA = DMA1SA; /* destination DMA address */
DMA1SZ = size - 1; // number of bytes to be transferred DMA1SZ = size - 1; /* number of bytes to be transferred */
DMACTL0 = DMA0TSEL_9 | DMA1TSEL_9; // trigger is UART1 receive for both DMA0 and DMA1 DMACTL0 = DMA0TSEL_9 | DMA1TSEL_9; /* trigger is UART1 receive for both DMA0 and DMA1 */
DMA0CTL = DMADT_0 | // Single transfer mode DMA0CTL = DMADT_0 | /* Single transfer mode */
DMASBDB | // Byte mode DMASBDB | /* Byte mode */
DMADSTINCR0 | DMADSTINCR1 | // Increment destination DMADSTINCR0 | DMADSTINCR1 | /* Increment destination */
DMAEN; // Enable DMA DMAEN; /* Enable DMA */
if (!incDest) { if(!incDest) {
DMA0CTL &= ~(DMADSTINCR0 | DMADSTINCR1); DMA0CTL &= ~(DMADSTINCR0 | DMADSTINCR1);
} }
DMA1CTL = DMADT_0 | // Single transfer mode DMA1CTL = DMADT_0 | /* Single transfer mode */
DMASBDB | // Byte mode DMASBDB | /* Byte mode */
DMAEN; // Enable DMA DMAEN; /* Enable DMA */
UART_TX = SPI_IDLE_SYMBOL; // Initiate transfer by sending the first byte UART_TX = SPI_IDLE_SYMBOL; /* Initiate transfer by sending the first byte */
sdspi_dma_wait(); sdspi_dma_wait();
#else #else
register uint8_t *p = (uint8_t *) pDestination; register uint8_t *p = (uint8_t *)pDestination;
register uint16_t i = size; register uint16_t i = size;
do { do {
UART_TX = SPI_IDLE_SYMBOL; UART_TX = SPI_IDLE_SYMBOL;
UART_WAIT_RX(); UART_WAIT_RX();
*p = UART_RX; *p = UART_RX;
if (incDest) { if(incDest) {
p++; p++;
} }
i--; i--;
} while (i); } while(i);
#endif #endif
splx(s); splx(s);
@ -171,25 +173,25 @@ sdspi_write(const void *pSource, const uint16_t size, const int increment)
#if SPI_DMA_WRITE #if SPI_DMA_WRITE
sdspi_dma_wait(); sdspi_dma_wait();
UART_RESET_RXTX(); // clear interrupts UART_RESET_RXTX(); /* clear interrupts */
// Configure the DMA transfer /* Configure the DMA transfer */
DMA0SA = ((uint16_t) pSource) + 1; // source DMA address DMA0SA = ((uint16_t) pSource) + 1; /* source DMA address */
DMA0DA = (uint16_t) & UART_TX; // destination DMA address DMA0DA = (uint16_t) & UART_TX; /* destination DMA address */
DMA0SZ = size - 1; // number of bytes to be transferred DMA0SZ = size - 1; /* number of bytes to be transferred */
DMACTL0 = DMA0TSEL_9; // trigger is UART1 receive DMACTL0 = DMA0TSEL_9; /* trigger is UART1 receive */
DMA0CTL = DMADT_0 | // Single transfer mode DMA0CTL = DMADT_0 | /* Single transfer mode */
DMASBDB | // Byte mode DMASBDB | /* Byte mode */
DMASRCINCR_3 | // Increment source DMASRCINCR_3 | /* Increment source */
DMAEN; // Enable DMA DMAEN; /* Enable DMA */
if (increment == 0) { if(increment == 0) {
DMA0CTL &= ~DMASRCINCR_3; DMA0CTL &= ~DMASRCINCR_3;
} }
sdspi_dma_lock = TRUE; sdspi_dma_lock = TRUE;
SPI_TX = ((uint8_t *) pSource)[0]; SPI_TX = ((uint8_t *)pSource)[0];
#else #else
register uint8_t *p = (uint8_t *) pSource; register uint8_t *p = (uint8_t *)pSource;
register uint16_t i = size; register uint16_t i = size;
do { do {
@ -198,7 +200,7 @@ sdspi_write(const void *pSource, const uint16_t size, const int increment)
UART_RX; UART_RX;
p += increment; p += increment;
i--; i--;
} while (i); } while(i);
#endif #endif
splx(s); splx(s);
@ -215,7 +217,7 @@ sdspi_idle(register const uint16_t clocks)
UART_WAIT_RX(); UART_WAIT_RX();
UART_RX; UART_RX;
i--; i--;
} while (i); } while(i);
} }
@ -231,6 +233,6 @@ sdspi_wait_token(const uint8_t feed, const uint8_t mask,
UART_WAIT_RX(); UART_WAIT_RX();
rx = UART_RX; rx = UART_RX;
i++; i++;
} while (((rx & mask) != token) && (i < timeout)); } while(((rx & mask) != token) && (i < timeout));
return i; return i;
} }