Added bursts support in CSMA/ContikiMAC, and CFS-swapping in

queuebuf. Exemplified in examples/udp-stream.
This commit is contained in:
simonduq 2011-09-27 16:05:30 +02:00
parent 5b1d9617c4
commit dd8576830e
19 changed files with 1197 additions and 285 deletions

View file

@ -43,6 +43,7 @@
#include "net/queuebuf.h"
#include "sys/ctimer.h"
#include "sys/clock.h"
#include "lib/random.h"
@ -76,26 +77,51 @@
#error Change CSMA_CONF_MAX_MAC_TRANSMISSIONS in contiki-conf.h or in your Makefile.
#endif /* CSMA_CONF_MAX_MAC_TRANSMISSIONS < 1 */
struct queued_packet {
struct queued_packet *next;
struct queuebuf *buf;
/* struct ctimer retransmit_timer;*/
/* Packet metadata */
struct qbuf_metadata {
mac_callback_t sent;
void *cptr;
uint8_t transmissions, max_transmissions;
uint8_t collisions, deferrals;
uint8_t max_transmissions;
};
#define MAX_QUEUED_PACKETS 6
MEMB(packet_memb, struct queued_packet, MAX_QUEUED_PACKETS);
LIST(queued_packet_list);
/* Every neighbor has its own packet queue */
struct neighbor_queue {
struct neighbor_queue *next;
rimeaddr_t addr;
struct ctimer transmit_timer;
uint8_t transmissions;
uint8_t collisions, deferrals;
LIST_STRUCT(queued_packet_list);
};
static struct ctimer transmit_timer;
/* The maximum number of co-existing neighbor queues */
#ifdef CSMA_CONF_MAX_NEIGHBOR_QUEUES
#define CSMA_MAX_NEIGHBOR_QUEUES CSMA_CONF_MAX_NEIGHBOR_QUEUES
#else
#define CSMA_MAX_NEIGHBOR_QUEUES 2
#endif /* CSMA_CONF_MAX_NEIGHBOR_QUEUES */
static uint8_t rdc_is_transmitting;
#define MAX_QUEUED_PACKETS QUEUEBUF_NUM
MEMB(neighbor_memb, struct neighbor_queue, CSMA_MAX_NEIGHBOR_QUEUES);
MEMB(packet_memb, struct rdc_buf_list, MAX_QUEUED_PACKETS);
MEMB(metadata_memb, struct qbuf_metadata, MAX_QUEUED_PACKETS);
LIST(neighbor_list);
static void packet_sent(void *ptr, int status, int num_transmissions);
static void transmit_packet_list(void *ptr);
/*---------------------------------------------------------------------------*/
static struct
neighbor_queue *neighbor_queue_from_addr(const rimeaddr_t *addr) {
struct neighbor_queue *n = list_head(neighbor_list);
while(n != NULL) {
if(rimeaddr_cmp(&n->addr, addr)) {
return n;
}
n = list_item_next(n);
}
return NULL;
}
/*---------------------------------------------------------------------------*/
static clock_time_t
default_timebase(void)
@ -115,61 +141,44 @@ default_timebase(void)
}
/*---------------------------------------------------------------------------*/
static void
transmit_queued_packet(void *ptr)
transmit_packet_list(void *ptr)
{
/* struct queued_packet *q = ptr;*/
struct queued_packet *q;
/* Don't transmit a packet if the RDC is still transmitting the
previous one. */
if(rdc_is_transmitting) {
return;
}
// printf("q %d\n", list_length(queued_packet_list));
q = list_head(queued_packet_list);
if(q != NULL) {
queuebuf_to_packetbuf(q->buf);
PRINTF("csma: sending number %d %p, queue len %d\n", q->transmissions, q,
list_length(queued_packet_list));
// printf("s %d\n", packetbuf_addr(PACKETBUF_ADDR_RECEIVER)->u8[0]);
rdc_is_transmitting = 1;
NETSTACK_RDC.send(packet_sent, q);
}
}
/*---------------------------------------------------------------------------*/
static void
start_transmission_timer(void)
{
PRINTF("csma: start_transmission_timer, queue len %d\n",
list_length(queued_packet_list));
if(list_length(queued_packet_list) > 0) {
if(ctimer_expired(&transmit_timer)) {
ctimer_set(&transmit_timer, 0,
transmit_queued_packet, NULL);
struct neighbor_queue *n = ptr;
if(n) {
struct rdc_buf_list *q = list_head(n->queued_packet_list);
if(q != NULL) {
PRINTF("csma: preparing number %d %p, queue len %d\n", n->transmissions, q,
list_length(n->queued_packet_list));
/* Send packets in the neighbor's list */
NETSTACK_RDC.send_list(packet_sent, n, q);
}
}
}
/*---------------------------------------------------------------------------*/
static void
free_queued_packet(void)
free_first_packet(struct neighbor_queue *n)
{
struct queued_packet *q;
// printf("q %d\n", list_length(queued_packet_list));
q = list_head(queued_packet_list);
struct rdc_buf_list *q = list_head(n->queued_packet_list);
if(q != NULL) {
/* Remove first packet from list and deallocate */
queuebuf_free(q->buf);
list_remove(queued_packet_list, q);
list_pop(n->queued_packet_list);
memb_free(&metadata_memb, q->ptr);
memb_free(&packet_memb, q);
PRINTF("csma: free_queued_packet, queue length %d\n",
list_length(queued_packet_list));
if(list_length(queued_packet_list) > 0) {
ctimer_set(&transmit_timer, default_timebase(), transmit_queued_packet, NULL);
list_length(n->queued_packet_list));
if(list_head(n->queued_packet_list)) {
/* There is a next packet. We reset current tx information */
n->transmissions = 0;
n->collisions = 0;
n->deferrals = 0;
/* Set a timer for next transmissions */
ctimer_set(&n->transmit_timer, default_timebase(), transmit_packet_list, n);
} else {
/* This was the last packet in the queue, we free the neighbor */
ctimer_stop(&n->transmit_timer);
list_remove(neighbor_list, n);
memb_free(&neighbor_memb, n);
}
}
}
@ -177,32 +186,32 @@ free_queued_packet(void)
static void
packet_sent(void *ptr, int status, int num_transmissions)
{
struct queued_packet *q = ptr;
struct neighbor_queue *n = ptr;
struct rdc_buf_list *q = list_head(n->queued_packet_list);
struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
clock_time_t time = 0;
mac_callback_t sent;
void *cptr;
int num_tx;
int backoff_transmissions;
rdc_is_transmitting = 0;
switch(status) {
case MAC_TX_OK:
case MAC_TX_NOACK:
q->transmissions++;
n->transmissions++;
break;
case MAC_TX_COLLISION:
q->collisions++;
n->collisions++;
break;
case MAC_TX_DEFERRED:
q->deferrals++;
n->deferrals++;
break;
}
sent = q->sent;
cptr = q->cptr;
num_tx = q->transmissions;
sent = metadata->sent;
cptr = metadata->cptr;
num_tx = n->transmissions;
if(status == MAC_TX_COLLISION ||
status == MAC_TX_NOACK) {
@ -211,13 +220,13 @@ packet_sent(void *ptr, int status, int num_transmissions)
switch(status) {
case MAC_TX_COLLISION:
PRINTF("csma: rexmit collision %d\n", q->transmissions);
PRINTF("csma: rexmit collision %d\n", n->transmissions);
break;
case MAC_TX_NOACK:
PRINTF("csma: rexmit noack %d\n", q->transmissions);
PRINTF("csma: rexmit noack %d\n", n->transmissions);
break;
default:
PRINTF("csma: rexmit err %d, %d\n", status, q->transmissions);
PRINTF("csma: rexmit err %d, %d\n", status, n->transmissions);
}
/* The retransmission time must be proportional to the channel
@ -227,7 +236,7 @@ packet_sent(void *ptr, int status, int num_transmissions)
/* The retransmission time uses a linear backoff so that the
interval between the transmissions increase with each
retransmit. */
backoff_transmissions = q->transmissions + 1;
backoff_transmissions = n->transmissions + 1;
/* Clamp the number of backoffs so that we don't get a too long
timeout here, since that will delay all packets in the
@ -235,32 +244,29 @@ packet_sent(void *ptr, int status, int num_transmissions)
if(backoff_transmissions > 3) {
backoff_transmissions = 3;
}
time = time + (random_rand() % (backoff_transmissions * time));
if(q->transmissions < q->max_transmissions) {
if(n->transmissions < metadata->max_transmissions) {
PRINTF("csma: retransmitting with time %lu %p\n", time, q);
ctimer_set(&transmit_timer, time,
transmit_queued_packet, NULL);
ctimer_set(&n->transmit_timer, time,
transmit_packet_list, n);
/* This is needed to correctly attribute energy that we spent
transmitting this packet. */
queuebuf_update_attr_from_packetbuf(q->buf);
} else {
PRINTF("csma: drop with status %d after %d transmissions, %d collisions\n",
status, q->transmissions, q->collisions);
/* queuebuf_to_packetbuf(q->buf);*/
free_queued_packet();
status, n->transmissions, n->collisions);
free_first_packet(n);
mac_call_sent_callback(sent, cptr, status, num_tx);
}
} else {
if(status == MAC_TX_OK) {
PRINTF("csma: rexmit ok %d\n", q->transmissions);
PRINTF("csma: rexmit ok %d\n", n->transmissions);
} else {
PRINTF("csma: rexmit failed %d: %d\n", q->transmissions, status);
PRINTF("csma: rexmit failed %d: %d\n", n->transmissions, status);
}
/* queuebuf_to_packetbuf(q->buf);*/
free_queued_packet();
free_first_packet(n);
mac_call_sent_callback(sent, cptr, status, num_tx);
}
}
@ -268,53 +274,89 @@ packet_sent(void *ptr, int status, int num_transmissions)
static void
send_packet(mac_callback_t sent, void *ptr)
{
struct queued_packet *q;
struct rdc_buf_list *q;
struct neighbor_queue *n;
static uint16_t seqno;
packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, seqno++);
/* If the packet is a broadcast, do not allocate a queue
entry. Instead, just send it out. */
if(!rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER),
&rimeaddr_null)) {
const rimeaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);
/* Remember packet for later. */
q = memb_alloc(&packet_memb);
if(q != NULL) {
q->buf = queuebuf_new_from_packetbuf();
if(q->buf != NULL) {
if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
/* Use default configuration for max transmissions */
q->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
} else {
q->max_transmissions =
packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
}
q->transmissions = 0;
q->collisions = 0;
q->deferrals = 0;
q->sent = sent;
q->cptr = ptr;
if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
PACKETBUF_ATTR_PACKET_TYPE_ACK) {
list_push(queued_packet_list, q);
} else {
list_add(queued_packet_list, q);
}
start_transmission_timer();
return;
/* Look for the neighbor entry */
n = neighbor_queue_from_addr(addr);
if(n == NULL) {
/* Allocate a new neighbor entry */
n = memb_alloc(&neighbor_memb);
if(n != NULL) {
/* Init neighbor entry */
rimeaddr_copy(&n->addr, addr);
n->transmissions = 0;
n->collisions = 0;
n->deferrals = 0;
/* Init packet list for this neighbor */
LIST_STRUCT_INIT(n, queued_packet_list);
/* Add neighbor to the list */
list_add(neighbor_list, n);
}
memb_free(&packet_memb, q);
PRINTF("csma: could not allocate queuebuf, will drop if collision or noack\n");
}
PRINTF("csma: could not allocate memb, will drop if collision or noack\n");
if(n != NULL) {
/* Add packet to the neighbor's queue */
q = memb_alloc(&packet_memb);
if(q != NULL) {
q->ptr = memb_alloc(&metadata_memb);
if(q->ptr != NULL) {
q->buf = queuebuf_new_from_packetbuf();
if(q->buf != NULL) {
struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
/* Neighbor and packet successfully allocated */
if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
/* Use default configuration for max transmissions */
metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
} else {
metadata->max_transmissions =
packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
}
metadata->sent = sent;
metadata->cptr = ptr;
if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
PACKETBUF_ATTR_PACKET_TYPE_ACK) {
list_push(n->queued_packet_list, q);
} else {
list_add(n->queued_packet_list, q);
}
/* If q is the first packet in the neighbor's queue, send asap */
if(list_head(n->queued_packet_list) == q) {
ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
}
return;
}
memb_free(&metadata_memb, q->ptr);
PRINTF("csma: could not allocate queuebuf, dropping packet\n");
}
memb_free(&packet_memb, q);
PRINTF("csma: could not allocate queuebuf, dropping packet\n");
}
/* The packet allocation failed. Remove and free neighbor entry if empty. */
if(list_length(n->queued_packet_list) == 0) {
list_remove(neighbor_list, n);
memb_free(&neighbor_memb, n);
}
PRINTF("csma: could not allocate packet, dropping packet\n");
} else {
PRINTF("csma: could not allocate neighbor, dropping packet\n");
}
mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
} else {
PRINTF("csma: send broadcast (%d) or without retransmissions (%d)\n",
!rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER),
&rimeaddr_null),
packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS));
PRINTF("csma: send broadcast\n");
NETSTACK_RDC.send(sent, ptr);
}
NETSTACK_RDC.send(sent, ptr);
}
/*---------------------------------------------------------------------------*/
static void
@ -348,7 +390,8 @@ static void
init(void)
{
memb_init(&packet_memb);
rdc_is_transmitting = 0;
memb_init(&metadata_memb);
memb_init(&neighbor_memb);
}
/*---------------------------------------------------------------------------*/
const struct mac_driver csma_driver = {