Added ELF-loader code, should probably eventually end up in core/loader.

Added some replacements for newlib's stdout.
Added missing startup code.
Some minor fixes.
This commit is contained in:
ksb 2007-03-07 16:07:25 +00:00
parent d684c14aa6
commit b105b40e9a
16 changed files with 3054 additions and 19 deletions

View file

@ -30,7 +30,7 @@ CONTIKIDIRS=$(CONTIKI)/core/sys:$(CONTIKI)/core/dev:$(CONTIKI)/core/cfs:$(CONTIK
### Compiler definitions
CC = arm-elf-gcc
LD = arm-elf-gcc
LD = arm-elf-ld
AS = arm-elf-as
AR = arm-elf-ar
NM = arm-elf-nm
@ -55,7 +55,8 @@ THUMB_FLAGS=-mthumb -mthumb-interwork
ARM_FLAGS=-mthumb-interwork
CFLAGSNO = -I. -I$(CONTIKI)/core -I$(CONTIKI_CPU) \
CFLAGSNO = -I. -I$(CONTIKI)/core -I$(CONTIKI_CPU) -I$(CONTIKI_CPU)/loader \
-I$(CONTIKI_CPU)/dbg-io\
-I$(CONTIKI)/platform/$(TARGET) \
${addprefix -I,$(APPDIRS)} \
-DWITH_UIP -DWITH_ASCII -DMCK=$(MCK) \
@ -73,7 +74,7 @@ CONTIKI_TARGET_DIRS_CONCAT = ${addprefix $(CONTIKI)/platform/$(TARGET)/, \
vpath %.c $(PROJECTDIRS) \
$(CONTIKIDIRS) $(APPDIRS) $(CONTIKI_TARGET_DIRS_CONCAT) \
$(CONTIKI_CPU)
$(CONTIKI_CPU) $(CONTIKI_CPU)/loader $(CONTIKI_CPU)/dbg-io
vpath %.S $(CONTIKI_CPU)
@ -96,8 +97,6 @@ interrupt-utils.o: interrupt-utils.c
$(LD) --relocatable -T $(CONTIKI_CPU)/merge-rodata.ld $< -o $@
$(STRIP) -K _init -K _fini --strip-unneeded -g -x $@
%.elf: $^ $(STARTUP)
$(CC) $(LDFLAGS) $(CFLAGS) $(THUMB_FLAGS) -nostartfiles -o $@ $^
# Add a namelist to the kernel
%-syms.elf: $^ $(STARTUP)
@ -107,6 +106,8 @@ interrupt-utils.o: interrupt-utils.c
-test -r $*.exclude && grep -v -f $*.exclude $*-nm.c >$*-tmp.c && mv $*-tmp.c $*-nm.c
$(CC) $(LDFLAGS) $(CFLAGS) $(THUMB_FLAGS) -nostartfiles -o $*-syms.elf $^ $*-nm.c
%.elf: $^ $(STARTUP)
$(CC) $(LDFLAGS) $(CFLAGS) $(THUMB_FLAGS) -nostartfiles -o $@ $^
%.ihx: %.elf
$(OBJCOPY) -O ihex $< $@
@ -137,3 +138,4 @@ clean:
-rm *.ihx
-rm *.bin
-rm *-nm.c
-rm *.ko

View file

@ -0,0 +1,28 @@
#include <stdio.h>
#include <debug-uart.h>
#include <string.h>
#include <strformat.h>
StrFormatResult
write_str(void *user_data, const char *data, unsigned int len)
{
dbg_send_bytes((unsigned char*)data, len);
return STRFORMAT_OK;
}
static StrFormatContext ctxt =
{
write_str,
NULL
};
int
printf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
return format_str_v(&ctxt, fmt, ap);
va_end(ap);
}

View file

@ -0,0 +1,26 @@
#include <stdio.h>
#include <debug-uart.h>
#include <string.h>
#undef putchar
#undef putc
int
putchar(int c)
{
dbg_putchar(c);
return c;
}
int
putc(int c, FILE *f)
{
dbg_putchar(c);
return c;
}
int
__sp(struct _reent *_ptr, int c, FILE *_p) {
dbg_putchar(c);
return c;
}

View file

@ -0,0 +1,11 @@
#include <stdio.h>
#include <debug-uart.h>
#include <string.h>
int
puts(const char *str)
{
dbg_send_bytes((unsigned char*)str, strlen(str));
dbg_putchar('\n');
return 0;
}

View file

@ -0,0 +1,615 @@
#include <strformat.h>
#define HAVE_DOUBLE
#define HAVE_LONGLONG
#ifndef LARGEST_SIGNED
#ifdef HAVE_LONGLONG
#define LARGEST_SIGNED long long int
#else
#define LARGEST_UNSIGNED long int
#endif
#endif
#ifndef LARGEST_UNSIGNED
#ifdef HAVE_LONGLONG
#define LARGEST_UNSIGNED unsigned long long int
#else
#define LARGEST_UNSIGNED unsigned long int
#endif
#endif
#ifndef POINTER_INT
#define POINTER_INT unsigned long
#endif
typedef unsigned int FormatFlags;
#define MAKE_MASK(shift,size) (((1 << size) - 1) << (shift))
#define JUSTIFY_SHIFT 0
#define JUSTIFY_SIZE 1
#define JUSTIFY_RIGHT 0x0000
#define JUSTIFY_LEFT 0x0001
#define JUSTIFY_MASK MAKE_MASK(JUSTIFY_SHIFT,JUSTIFY_SIZE)
/* How a positive number is prefixed */
#define POSITIVE_SHIFT (JUSTIFY_SHIFT + JUSTIFY_SIZE)
#define POSITIVE_NONE (0x0000 << POSITIVE_SHIFT)
#define POSITIVE_SPACE (0x0001 << POSITIVE_SHIFT)
#define POSITIVE_PLUS (0x0003 << POSITIVE_SHIFT)
#define POSITIVE_MASK MAKE_MASK(POSITIVE_SHIFT, POSITIVE_SIZE)
#define POSITIVE_SIZE 2
#define ALTERNATE_FORM_SHIFT (POSITIVE_SHIFT + POSITIVE_SIZE)
#define ALTERNATE_FORM_SIZE 1
#define ALTERNATE_FORM (0x0001 << ALTERNATE_FORM_SHIFT)
#define PAD_SHIFT (ALTERNATE_FORM_SHIFT + ALTERNATE_FORM_SIZE)
#define PAD_SIZE 1
#define PAD_SPACE (0x0000 << PAD_SHIFT)
#define PAD_ZERO (0x0001 << PAD_SHIFT)
#define SIZE_SHIFT (PAD_SHIFT + PAD_SIZE)
#define SIZE_SIZE 3
#define SIZE_CHAR (0x0001 << SIZE_SHIFT)
#define SIZE_SHORT (0x0002 << SIZE_SHIFT)
#define SIZE_INT (0x0000 << SIZE_SHIFT)
#define SIZE_LONG (0x0003 << SIZE_SHIFT)
#define SIZE_LONGLONG (0x0004 << SIZE_SHIFT)
#define SIZE_MASK MAKE_MASK(SIZE_SHIFT,SIZE_SIZE)
#define CONV_SHIFT (SIZE_SHIFT + SIZE_SIZE)
#define CONV_SIZE 3
#define CONV_INTEGER (0x0001 << CONV_SHIFT)
#define CONV_FLOAT (0x0002 << CONV_SHIFT)
#define CONV_POINTER (0x0003 << CONV_SHIFT)
#define CONV_STRING (0x0004 << CONV_SHIFT)
#define CONV_CHAR (0x0005 << CONV_SHIFT)
#define CONV_PERCENT (0x0006 << CONV_SHIFT)
#define CONV_WRITTEN (0x0007 << CONV_SHIFT)
#define CONV_MASK MAKE_MASK(CONV_SHIFT, CONV_SIZE)
#define RADIX_SHIFT (CONV_SHIFT + CONV_SIZE)
#define RADIX_SIZE 2
#define RADIX_DECIMAL (0x0001 << RADIX_SHIFT)
#define RADIX_OCTAL (0x0002 << RADIX_SHIFT)
#define RADIX_HEX (0x0003 << RADIX_SHIFT)
#define RADIX_MASK MAKE_MASK(RADIX_SHIFT,RADIX_SIZE)
#define SIGNED_SHIFT (RADIX_SHIFT + RADIX_SIZE)
#define SIGNED_SIZE 1
#define SIGNED_NO (0x0000 << SIGNED_SHIFT)
#define SIGNED_YES (0x0001 << SIGNED_SHIFT)
#define SIGNED_MASK MAKE_MASK(SIGNED_SHIFT,SIGNED_SIZE)
#define CAPS_SHIFT (SIGNED_SHIFT + SIGNED_SIZE)
#define CAPS_SIZE 1
#define CAPS_NO (0x0000 << CAPS_SHIFT)
#define CAPS_YES (0x0001 << CAPS_SHIFT)
#define CAPS_MASK MAKE_MASK(CAPS_SHIFT,CAPS_SIZE)
#define FLOAT_SHIFT (CAPS_SHIFT + CAPS_SIZE)
#define FLOAT_SIZE 2
#define FLOAT_NORMAL (0x0000 << FLOAT_SHIFT)
#define FLOAT_EXPONENT (0x0001 << FLOAT_SHIFT)
#define FLOAT_DEPENDANT (0x0002 << FLOAT_SHIFT)
#define FLOAT_HEX (0x0003 << FLOAT_SHIFT)
#define FLOAT_MASK MAKE_MASK(FLOAT_SHIFT, FLOAT_SIZE)
static FormatFlags
parse_flags(const char **posp)
{
FormatFlags flags = 0;
const char *pos = *posp;
while (1) {
switch(*pos) {
case '-':
flags |= JUSTIFY_LEFT;
break;
case '+':
flags |= POSITIVE_PLUS;
break;
case ' ':
flags |= POSITIVE_SPACE;
break;
case '#':
flags |= ALTERNATE_FORM;
break;
case '0':
flags |= PAD_ZERO;
break;
default:
*posp = pos;
return flags;
}
pos++;
}
}
static unsigned int
parse_uint(const char **posp)
{
unsigned v = 0;
const char *pos = *posp;
char ch;
while((ch = *pos) >= '0' && ch <= '9') {
v = v * 10 + (ch - '0');
pos++;
}
*posp = pos;
return v;
}
#define MAXCHARS_HEX ((sizeof(LARGEST_UNSIGNED) * 8) / 4 )
/* Largest number of characters needed for converting an unsigned integer.
*/
#define MAXCHARS ((sizeof(LARGEST_UNSIGNED) * 8 + 2) / 3 )
static unsigned int
output_uint_decimal(char **posp, LARGEST_UNSIGNED v)
{
unsigned int len;
char *pos = *posp;
while (v > 0) {
*--pos = (v % 10) + '0';
v /= 10;
}
len = *posp - pos;
*posp = pos;
return len;
}
static unsigned int
output_uint_hex(char **posp, LARGEST_UNSIGNED v, unsigned int flags)
{
unsigned int len;
const char *hex = (flags & CAPS_YES) ?"0123456789ABCDEF":"0123456789abcdef";
char *pos = *posp;
while (v > 0) {
*--pos = hex[(v % 16)];
v /= 16;
}
len = *posp - pos;
*posp = pos;
return len;
}
static unsigned int
output_uint_octal(char **posp, LARGEST_UNSIGNED v)
{
unsigned int len;
char *pos = *posp;
while (v > 0) {
*--pos = (v % 8) + '0';
v /= 8;
}
len = *posp - pos;
*posp = pos;
return len;
}
static StrFormatResult
fill_space(const StrFormatContext *ctxt, unsigned int len)
{
StrFormatResult res;
static const char buffer[16] = " ";
while(len > 16) {
res = ctxt->write_str(ctxt->user_data, buffer, 16);
if (res != STRFORMAT_OK) return res;
len -= 16;
}
if (len == 0) return STRFORMAT_OK;
return ctxt->write_str(ctxt->user_data, buffer, len);
}
static StrFormatResult
fill_zero(const StrFormatContext *ctxt, unsigned int len)
{
StrFormatResult res;
static const char buffer[16] = "0000000000000000";
while(len > 16) {
res = ctxt->write_str(ctxt->user_data, buffer, 16);
if (res != STRFORMAT_OK) return res;
len -= 16;
}
if (len == 0) return STRFORMAT_OK;
return ctxt->write_str(ctxt->user_data, buffer, len);
}
#define CHECKCB(res) {if ((res) != STRFORMAT_OK) {va_end(ap); return -1;}}
int
format_str(const StrFormatContext *ctxt, const char *format, ...)
{
int ret;
va_list ap;
va_start(ap, format);
ret = format_str_v(ctxt, format, ap);
va_end(ap);
return ret;
}
int
format_str_v(const StrFormatContext *ctxt, const char *format, va_list ap)
{
unsigned int written = 0;
const char *pos = format;
while(*pos != '\0') {
FormatFlags flags;
unsigned int minwidth = 0;
int precision = -1; /* Negative means no precision */
char ch;
const char *start = pos;
while( (ch = *pos) != '\0' && ch != '%') pos++;
if (pos != start) {
CHECKCB(ctxt->write_str(ctxt->user_data, start, pos - start));
written += pos - start;
}
if (*pos == '\0') {
va_end(ap);
return written;
}
pos++;
if (*pos == '\0') {
va_end(ap);
return written;
}
flags = parse_flags(&pos);
/* parse width */
if (*pos >= '1' && *pos <= '9') {
minwidth = parse_uint(&pos);
} else if (*pos == '*') {
int w = va_arg(ap,int);
if (w < 0) {
flags |= JUSTIFY_LEFT;
minwidth = w;
} else {
minwidth = w;
}
pos ++;
}
/* parse precision */
if (*pos == '.') {
pos++;
if (*pos >= '0' && *pos <= '9') {
precision = parse_uint(&pos);
} else if (*pos == '*') {
precision = va_arg(ap,int);
}
}
if (*pos == 'l') {
pos++;
if (*pos == 'l') {
flags |= SIZE_LONGLONG;
pos++;
} else {
flags |= SIZE_LONG;
}
} else if (*pos == 'h') {
pos++;
if (*pos == 'h') {
flags |= SIZE_CHAR;
pos++;
} else {
flags |= SIZE_SHORT;
}
}
/* parse conversion specifier */
switch(*pos) {
case 'd':
case 'i':
flags |= CONV_INTEGER | RADIX_DECIMAL | SIGNED_YES;
break;
case 'u':
flags |= CONV_INTEGER | RADIX_DECIMAL | SIGNED_NO;
break;
case 'o':
flags |= CONV_INTEGER | RADIX_OCTAL | SIGNED_NO;
break;
case 'x':
flags |= CONV_INTEGER | RADIX_HEX | SIGNED_NO;
break;
case 'X':
flags |= CONV_INTEGER | RADIX_HEX | SIGNED_NO | CAPS_YES;
break;
#ifdef HAVE_DOUBLE
case 'f':
flags |= CONV_FLOAT | FLOAT_NORMAL;
break;
case 'F':
flags |= CONV_FLOAT | FLOAT_NORMAL | CAPS_YES;
break;
case 'e':
flags |= CONV_FLOAT | FLOAT_EXPONENT;
break;
case 'E':
flags |= CONV_FLOAT | FLOAT_EXPONENT | CAPS_YES;
break;
case 'g':
flags |= CONV_FLOAT | FLOAT_DEPENDANT;
break;
case 'G':
flags |= CONV_FLOAT | FLOAT_DEPENDANT | CAPS_YES;
break;
case 'a':
flags |= CONV_FLOAT | FLOAT_HEX;
break;
case 'A':
flags |= CONV_FLOAT | FLOAT_HEX | CAPS_YES;
break;
#endif
case 'c':
flags |= CONV_CHAR;
break;
case 's':
flags |= CONV_STRING;
break;
case 'p':
flags |= CONV_POINTER;
break;
case 'n':
flags |= CONV_WRITTEN;
break;
case '%':
flags |= CONV_PERCENT;
break;
case '\0':
va_end(ap);
return written;
}
pos++;
switch(flags & CONV_MASK) {
case CONV_PERCENT:
CHECKCB(ctxt->write_str(ctxt->user_data, "%", 1));
written++;
break;
case CONV_INTEGER:
{
/* unsigned integers */
char *prefix = 0; /* sign, "0x" or "0X" */
unsigned int prefix_len = 0;
char buffer[MAXCHARS];
char *conv_pos = buffer + MAXCHARS;
unsigned int conv_len = 0;
unsigned int width = 0;
unsigned int precision_fill;
unsigned int field_fill;
LARGEST_UNSIGNED uvalue = 0;
int negative = 0;
if (precision < 0) precision = 1;
else flags &= ~PAD_ZERO;
if (flags & SIGNED_YES) {
/* signed integers */
LARGEST_SIGNED value = 0;
switch(flags & SIZE_MASK) {
case SIZE_CHAR:
value = (signed char)va_arg(ap, int);
break;
case SIZE_SHORT:
value = (short)va_arg(ap, int);
break;
case SIZE_INT:
value = va_arg(ap, int);
break;
#ifndef HAVE_LONGLONG
case SIZE_LONGLONG: /* Treat long long the same as long */
#endif
case SIZE_LONG:
value = va_arg(ap, long);
break;
#ifdef HAVE_LONGLONG
case SIZE_LONGLONG:
value = va_arg(ap, long long);
break;
#endif
}
if (value < 0) {
uvalue = -value;
negative = 1;
} else {
uvalue = value;
}
} else {
switch(flags & SIZE_MASK) {
case SIZE_CHAR:
uvalue = (unsigned char)va_arg(ap,unsigned int);
break;
case SIZE_SHORT:
uvalue = (unsigned short)va_arg(ap,unsigned int);
break;
case SIZE_INT:
uvalue = va_arg(ap,unsigned int);
break;
#ifndef HAVE_LONGLONG
case SIZE_LONGLONG: /* Treat long long the same as long */
#endif
case SIZE_LONG:
uvalue = va_arg(ap,unsigned long);
break;
#ifdef HAVE_LONGLONG
case SIZE_LONGLONG:
uvalue = va_arg(ap,unsigned long long);
break;
#endif
}
}
switch(flags & (RADIX_MASK)) {
case RADIX_DECIMAL:
conv_len = output_uint_decimal(&conv_pos,uvalue);
break;
case RADIX_OCTAL:
conv_len = output_uint_octal(&conv_pos,uvalue);
break;
case RADIX_HEX:
conv_len = output_uint_hex(&conv_pos,uvalue, flags);
break;
}
width += conv_len;
precision_fill = (precision > conv_len) ? precision - conv_len : 0;
if ((flags & (RADIX_MASK | ALTERNATE_FORM))
== (RADIX_OCTAL | ALTERNATE_FORM)) {
if (precision_fill < 1) precision_fill = 1;
}
width += precision_fill;
if ((flags & (RADIX_MASK | ALTERNATE_FORM))
== (RADIX_HEX | ALTERNATE_FORM) && uvalue != 0) {
prefix_len = 2;
if (flags & CAPS_YES) {
prefix = "0X";
} else {
prefix = "0x";
}
}
if (flags & SIGNED_YES) {
if (negative) {
prefix = "-";
prefix_len = 1;
} else {
switch(flags & POSITIVE_MASK) {
case POSITIVE_SPACE:
prefix = " ";
prefix_len = 1;
break;
case POSITIVE_PLUS:
prefix = "+";
prefix_len = 1;
break;
}
}
}
width += prefix_len;
field_fill = (minwidth > width) ? minwidth - width : 0;
if ((flags & JUSTIFY_MASK) == JUSTIFY_RIGHT) {
if (flags & PAD_ZERO) {
precision_fill += field_fill;
} else {
CHECKCB(fill_space(ctxt,field_fill));
}
}
if (prefix_len > 0)
CHECKCB(ctxt->write_str(ctxt->user_data, prefix, prefix_len));
written += prefix_len;
CHECKCB(fill_zero(ctxt,precision_fill));
written += prefix_len;
CHECKCB(ctxt->write_str(ctxt->user_data, conv_pos,conv_len));
written += conv_len;
if ((flags & JUSTIFY_MASK) == JUSTIFY_LEFT) {
CHECKCB(fill_space(ctxt,field_fill));
}
written += field_fill;
}
break;
case CONV_STRING:
{
unsigned int field_fill;
unsigned int len;
char *str = va_arg(ap,char *);
if (str) {
char *pos = str;
while(*pos != '\0') pos++;
len = pos - str;
} else {
str = "(null)";
len = 6;
}
if (precision >= 0 && precision < len) len = precision;
field_fill = (minwidth > len) ? minwidth - len : 0;
if ((flags & JUSTIFY_MASK) == JUSTIFY_RIGHT) {
CHECKCB(fill_space(ctxt,field_fill));
}
CHECKCB(ctxt->write_str(ctxt->user_data, str,len));
written += len;
if ((flags & JUSTIFY_MASK) == JUSTIFY_LEFT) {
CHECKCB(fill_space(ctxt,field_fill));
}
written += field_fill;
}
break;
case CONV_POINTER:
{
LARGEST_UNSIGNED uvalue =
(LARGEST_UNSIGNED)(POINTER_INT)va_arg(ap,void *);
char buffer[MAXCHARS_HEX + 3];
char *conv_pos = buffer + MAXCHARS_HEX+3;
unsigned int conv_len;
unsigned int field_fill;
conv_len = output_uint_hex(&conv_pos,uvalue,flags);
if (conv_len == 0) {
*--conv_pos = '0';
conv_len++;
}
*--conv_pos = 'x';
*--conv_pos = '0';
*--conv_pos = '#';
conv_len += 3;
field_fill = (minwidth > conv_len) ? minwidth - conv_len : 0;
if ((flags & JUSTIFY_MASK) == JUSTIFY_RIGHT) {
CHECKCB(fill_space(ctxt,field_fill));
}
CHECKCB(ctxt->write_str(ctxt->user_data, conv_pos,conv_len));
written += conv_len;
if ((flags & JUSTIFY_MASK) == JUSTIFY_LEFT) {
CHECKCB(fill_space(ctxt,field_fill));
}
written += field_fill;
}
break;
case CONV_CHAR:
{
char ch = va_arg(ap,int);
unsigned int field_fill = (minwidth > 1) ? minwidth - 1 : 0;
if ((flags & JUSTIFY_MASK) == JUSTIFY_RIGHT) {
CHECKCB(fill_space(ctxt,field_fill));
written += field_fill;
}
CHECKCB(ctxt->write_str(ctxt->user_data, &ch, 1));
written++;
if ((flags & JUSTIFY_MASK) == JUSTIFY_LEFT) {
CHECKCB(fill_space(ctxt,field_fill));
}
written+= field_fill;
}
break;
case CONV_WRITTEN:
{
int *p = va_arg(ap,int*);
*p = written;
}
break;
}
}
return written;
}

View file

@ -0,0 +1,25 @@
#ifndef __STRFORMAT_H__
#define __STRFORMAT_H__
#include <stdarg.h>
#define STRFORMAT_OK 0
#define STRFORMAT_FAILED 1
typedef unsigned int StrFormatResult;
/* The data argument may only be considered valid during the function call */
typedef StrFormatResult (*StrFormatWrite)(void *user_data, const char *data, unsigned int len);
typedef struct _StrFormatContext
{
StrFormatWrite write_str;
void *user_data;
} StrFormatContext;
int format_str(const StrFormatContext *ctxt, const char *format, ...)
__attribute__ ((__format__ (__printf__, 2,3)));
int
format_str_v(const StrFormatContext *ctxt, const char *format, va_list ap);
#endif /* __STRFORMAT_H__ */

View file

@ -17,7 +17,7 @@
/* Adapted from elfloader-avr.c */
void
int
elfloader_arch_relocate(int input_fd,
struct elfloader_output *output,
unsigned int sectionoffset,
@ -25,7 +25,6 @@ elfloader_arch_relocate(int input_fd,
struct elf32_rela *rela, char *addr)
{
unsigned int type;
unsigned char instr[4];
type = ELF32_R_TYPE(rela->r_info);
@ -46,6 +45,7 @@ elfloader_arch_relocate(int input_fd,
break;
case R_ARM_THM_CALL:
{
uint16_t instr[2];
int32_t offset;
char *base;
cfs_read(input_fd, (char*)instr, 4);
@ -53,7 +53,24 @@ elfloader_arch_relocate(int input_fd,
and I can't think of a case when doing a relative call to
a non-symbol position */
base = sectionaddr + (rela->r_offset + 4);
if (((*(uint16_t*)(instr+2)) & 0x1800) == 0x0800) {
if (((instr[1]) & 0xe800) == 0xe800) {
/* BL or BLX */
if (((uint32_t)addr) & 0x1) {
/* BL */
instr[1] |= 0x1800;
} else {
#if defined(__ARM_ARCH_4T__)
return ELFLOADER_UNHANDLED_RELOC;
#else
/* BLX */
instr[1] &= ~0x1800;
instr[1] |= 0x0800;
#endif
}
}
/* Adjust address for BLX */
if ((instr[1] & 0x1800) == 0x0800) {
addr = (char*)((((uint32_t)addr) & 0xfffffffd)
| (((uint32_t)base) & 0x00000002));
}
@ -62,17 +79,17 @@ elfloader_arch_relocate(int input_fd,
PRINTF("elfloader-arm.c: offset %d too large for relative call\n",
(int)offset);
}
/* PRINTF("%p: %04x %04x offset: %d addr: %p\n", sectionaddr +rela->r_offset, *(uint16_t*)instr, *(uint16_t*)(instr+2), (int)offset, addr); */
*(uint16_t*)instr = (*(uint16_t*)instr & 0xf800) | ((offset>>12)&0x07ff);
*(uint16_t*)(instr+2) = ((*(uint16_t*)(instr+2) & 0xf800)
| ((offset>>1)&0x07ff));
/* PRINTF("%p: %04x %04x offset: %d addr: %p\n", sectionaddr +rela->r_offset, instr[0], instr[1], (int)offset, addr); */
instr[0] = (instr[0] & 0xf800) | ((offset>>12)&0x07ff);
instr[1] = (instr[1] & 0xf800) | ((offset>>1)&0x07ff);
elfloader_output_write_segment(output, (char*)instr, 4);
/* PRINTF("cfs_write: %04x %04x\n",*(uint16_t*)instr, *(uint16_t*)(instr+2)); */
/* PRINTF("cfs_write: %04x %04x\n",instr[0], instr[1]); */
}
break;
default:
PRINTF("elfloader-arm.c: unsupported relocation type %d\n", type);
break;
return ELFLOADER_UNHANDLED_RELOC;
}
return ELFLOADER_OK;
}

View file

@ -0,0 +1,522 @@
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
* @(#)$Id: codeprop-otf.c,v 1.1 2007/03/07 16:07:26 ksb Exp $
*/
/** \addtogroup esb
* @{ */
/**
*
* \file
* Code propagation and storage.
* \author
* Adam Dunkels <adam@sics.se>
*
* This file implements a simple form of code propagation, which
* allows a binary program to be downloaded and propagated throughout
* a network of devices.
*
* Features:
*
* Commands: load code, start code
* Point-to-point download over TCP
* Point-to-multipoint delivery over UDP broadcasts
* Versioning of code modules
*
* Procedure:
*
* 1. Receive code over TCP
* 2. Send code packets over UDP
*
* When a code packet is deemed to be missed, a NACK is sent. If a
* NACK is received, the sending restarts at the point in the
* binary where the NACK pointed to. (This is *not* very efficient,
* but simple to implement...)
*
* States:
*
* Receiving code header -> receiving code -> sending code
*
*/
#include <stdio.h>
#include "contiki-net.h"
#include "cfs/cfs.h"
#include "codeprop-otf.h"
#include "loader/elfloader-otf.h"
#include <string.h>
static const char *err_msgs[] =
{"OK\r\n", "Bad ELF header\r\n", "No symtab\r\n", "No strtab\r\n",
"No text\r\n", "Symbol not found\r\n", "Segment not found\r\n",
"No startpoint\r\n", "Unhandled relocation\r\n",
"Relocation out of range\r\n", "Relocations not sorted\r\n",
"Input error\r\n" , "Ouput error\r\n" };
#define CODEPROP_DATA_PORT 6510
/*static int random_rand(void) { return 1; }*/
#if 0
#define PRINTF(x) printf x
#else
#define PRINTF(x)
#endif
#define START_TIMEOUT 12 * CLOCK_SECOND
#define MISS_NACK_TIMEOUT (CLOCK_SECOND / 8) * (random_rand() % 8)
#define HIT_NACK_TIMEOUT (CLOCK_SECOND / 8) * (8 + random_rand() % 16)
#define NACK_REXMIT_TIMEOUT CLOCK_SECOND * (4 + random_rand() % 4)
#define WAITING_TIME CLOCK_SECOND * 10
#define NUM_SEND_DUPLICATES 2
#define UDPHEADERSIZE 8
#define UDPDATASIZE 32
struct codeprop_udphdr {
u16_t id;
u16_t type;
#define TYPE_DATA 0x0001
#define TYPE_NACK 0x0002
u16_t addr;
u16_t len;
u8_t data[UDPDATASIZE];
};
struct codeprop_tcphdr {
u16_t len;
};
static void uipcall(void *state);
PROCESS(codeprop_process, "Code propagator");
struct codeprop_state {
u8_t state;
#define STATE_NONE 0
#define STATE_RECEIVING_TCPDATA 1
#define STATE_RECEIVING_UDPDATA 2
#define STATE_SENDING_UDPDATA 3
u16_t count;
u16_t addr;
u16_t len;
u16_t id;
struct etimer sendtimer;
struct timer nacktimer, timer, starttimer;
u8_t received;
u8_t send_counter;
struct pt tcpthread_pt;
struct pt udpthread_pt;
struct pt recv_udpthread_pt;
};
static int fd;
static struct uip_udp_conn *udp_conn;
static struct codeprop_state s;
void system_log(char *msg);
static clock_time_t send_time;
#define CONNECTION_TIMEOUT (30 * CLOCK_SECOND)
/*---------------------------------------------------------------------*/
void
codeprop_set_rate(clock_time_t time)
{
send_time = time;
}
/*---------------------------------------------------------------------*/
PROCESS_THREAD(codeprop_process, ev, data)
{
PROCESS_BEGIN();
elfloader_init();
s.id = 0/*random_rand()*/;
send_time = CLOCK_SECOND/4;
PT_INIT(&s.udpthread_pt);
PT_INIT(&s.recv_udpthread_pt);
tcp_listen(HTONS(CODEPROP_DATA_PORT));
udp_conn = udp_broadcast_new(HTONS(CODEPROP_DATA_PORT), NULL);
s.state = STATE_NONE;
s.received = 0;
s.addr = 0;
s.len = 0;
fd = cfs_open("codeprop-image", CFS_READ | CFS_WRITE);
while(1) {
PROCESS_YIELD();
if(ev == tcpip_event) {
uipcall(data);
} else if(ev == PROCESS_EVENT_TIMER) {
tcpip_poll_udp(udp_conn);
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------*/
static u16_t
send_udpdata(struct codeprop_udphdr *uh)
{
u16_t len;
uh->type = HTONS(TYPE_DATA);
uh->addr = htons(s.addr);
uh->id = htons(s.id);
if(s.len - s.addr > UDPDATASIZE) {
len = UDPDATASIZE;
} else {
len = s.len - s.addr;
}
cfs_seek(fd, s.addr);
cfs_read(fd, (char*)&uh->data[0], len);
/* eeprom_read(EEPROMFS_ADDR_CODEPROP + s.addr,
&uh->data[0], len);*/
uh->len = htons(s.len);
PRINTF(("codeprop: sending packet from address 0x%04x\n", s.addr));
uip_udp_send(len + UDPHEADERSIZE);
return len;
}
/*---------------------------------------------------------------------*/
static
PT_THREAD(send_udpthread(struct pt *pt))
{
int len;
struct codeprop_udphdr *uh = (struct codeprop_udphdr *)uip_appdata;
PT_BEGIN(pt);
while(1) {
PT_WAIT_UNTIL(pt, s.state == STATE_SENDING_UDPDATA);
for(s.addr = 0; s.addr < s.len; ) {
len = send_udpdata(uh);
s.addr += len;
etimer_set(&s.sendtimer, CLOCK_SECOND/4);
do {
PT_WAIT_UNTIL(pt, uip_newdata() || etimer_expired(&s.sendtimer));
if(uip_newdata()) {
if(uh->type == HTONS(TYPE_NACK)) {
PRINTF(("send_udpthread: got NACK for address 0x%x (now 0x%x)\n",
htons(uh->addr), s.addr));
/* Only accept a NACK if it points to a lower byte. */
if(htons(uh->addr) <= s.addr) {
/* beep();*/
s.addr = htons(uh->addr);
}
}
PT_YIELD(pt);
}
} while(!etimer_expired(&s.sendtimer));
}
s.state = STATE_NONE;
/* process_post(PROCESS_BROADCAST, codeprop_event_quit, (process_data_t)NULL); */
}
PT_END(pt);
}
/*---------------------------------------------------------------------*/
static void
send_nack(struct codeprop_udphdr *uh, unsigned short addr)
{
uh->type = HTONS(TYPE_NACK);
uh->addr = htons(addr);
uip_udp_send(UDPHEADERSIZE);
}
/*---------------------------------------------------------------------*/
static
PT_THREAD(recv_udpthread(struct pt *pt))
{
int len;
struct codeprop_udphdr *uh = (struct codeprop_udphdr *)uip_appdata;
/* if(uip_newdata()) {
PRINTF(("recv_udpthread: id %d uh->id %d\n", s.id, htons(uh->id)));
}*/
PT_BEGIN(pt);
while(1) {
do {
PT_WAIT_UNTIL(pt, uip_newdata() &&
uh->type == HTONS(TYPE_DATA) &&
htons(uh->id) > s.id);
if(htons(uh->addr) != 0) {
s.addr = 0;
send_nack(uh, 0);
}
} while(htons(uh->addr) != 0);
/* leds_on(LEDS_YELLOW);
beep_down(10000);*/
s.addr = 0;
s.id = htons(uh->id);
s.len = htons(uh->len);
timer_set(&s.timer, CONNECTION_TIMEOUT);
/* process_post(PROCESS_BROADCAST, codeprop_event_quit, (process_data_t)NULL); */
while(s.addr < s.len) {
if(htons(uh->addr) == s.addr) {
/* leds_blink();*/
len = uip_datalen() - UDPHEADERSIZE;
if(len > 0) {
/* eeprom_write(EEPROMFS_ADDR_CODEPROP + s.addr,
&uh->data[0], len);*/
cfs_seek(fd, s.addr);
cfs_write(fd, (char*)&uh->data[0], len);
/* beep();*/
PRINTF(("Saved %d bytes at address %d, %d bytes left\n",
uip_datalen() - UDPHEADERSIZE, s.addr,
s.len - s.addr));
s.addr += len;
}
} else if(htons(uh->addr) > s.addr) {
PRINTF(("sending nack since 0x%x != 0x%x\n", htons(uh->addr), s.addr));
send_nack(uh, s.addr);
}
if(s.addr < s.len) {
/* timer_set(&s.nacktimer, NACK_TIMEOUT);*/
do {
timer_set(&s.nacktimer, HIT_NACK_TIMEOUT);
PT_YIELD_UNTIL(pt, timer_expired(&s.nacktimer) ||
(uip_newdata() &&
uh->type == HTONS(TYPE_DATA) &&
htons(uh->id) == s.id));
if(timer_expired(&s.nacktimer)) {
send_nack(uh, s.addr);
}
} while(timer_expired(&s.nacktimer));
}
}
/* leds_off(LEDS_YELLOW);
beep_quick(2);*/
/* printf("Received entire bunary over udr\n");*/
codeprop_start_program();
PT_EXIT(pt);
}
PT_END(pt);
}
/*---------------------------------------------------------------------*/
#define CODEPROP_TCPHDR_SIZE 2
static
PT_THREAD(recv_tcpthread(struct pt *pt))
{
struct codeprop_tcphdr *th;
int datalen = uip_datalen();
PT_BEGIN(pt);
while(1) {
PT_WAIT_UNTIL(pt, uip_connected());
codeprop_exit_program();
s.state = STATE_RECEIVING_TCPDATA;
s.addr = 0;
s.count = 0;
/* Read the header. */
PT_WAIT_UNTIL(pt, uip_newdata() && uip_datalen() > 0);
if(uip_datalen() < CODEPROP_TCPHDR_SIZE) {
PRINTF(("codeprop: header not found in first tcp segment\n"));
uip_abort();
}
th = (struct codeprop_tcphdr *)uip_appdata;
s.len = htons(th->len);
s.addr = 0;
uip_appdata += CODEPROP_TCPHDR_SIZE;
datalen -= CODEPROP_TCPHDR_SIZE;
/* Read the rest of the data. */
do {
if(datalen > 0) {
/* printf("Got %d bytes\n", datalen); */
if (cfs_seek(fd, s.addr) != s.addr) {
PRINTF(("codeprop: seek in buffer file failed\n"));
uip_abort();
}
if (cfs_write(fd, uip_appdata, datalen) != datalen) {
PRINTF(("codeprop: write to buffer file failed\n"));
uip_abort();
}
s.addr += datalen;
}
if(s.addr < s.len) {
PT_YIELD_UNTIL(pt, uip_newdata());
}
} while(s.addr < s.len);
#if 1
{
static int err;
err = codeprop_start_program();
/* Print out the "OK"/error message. */
do {
if (err >= 0 && err < sizeof(err_msgs)/sizeof(char*)) {
uip_send(err_msgs[err], strlen(err_msgs[err]));
} else {
uip_send("Unknown error\r\n", 15);
}
PT_WAIT_UNTIL(pt, uip_acked() || uip_rexmit() || uip_closed());
} while(uip_rexmit());
/* Close the connection. */
uip_close();
}
#endif
++s.id;
s.state = STATE_SENDING_UDPDATA;
tcpip_poll_udp(udp_conn);
PT_WAIT_UNTIL(pt, s.state != STATE_SENDING_UDPDATA);
/* printf("recv_tcpthread: unblocked\n");*/
}
PT_END(pt);
}
/*---------------------------------------------------------------------*/
void
codeprop_start_broadcast(unsigned int len)
{
s.addr = 0;
s.len = len;
++s.id;
s.state = STATE_SENDING_UDPDATA;
tcpip_poll_udp(udp_conn);
}
/*---------------------------------------------------------------------*/
void
codeprop_exit_program(void)
{
if(elfloader_autostart_processes != NULL) {
autostart_exit(elfloader_autostart_processes);
}
}
/*---------------------------------------------------------------------*/
int
codeprop_start_program(void)
{
int err;
codeprop_exit_program();
err = elfloader_load(fd, codeprop_output);
if(err == ELFLOADER_OK) {
PRINTF(("codeprop: starting %s\n",
elfloader_autostart_processes[0]->name));
autostart_start(elfloader_autostart_processes);
}
return err;
}
/*---------------------------------------------------------------------*/
static void
uipcall(void *state)
{
if(uip_udpconnection()) {
recv_udpthread(&s.recv_udpthread_pt);
send_udpthread(&s.udpthread_pt);
} else {
if(uip_conn->lport == HTONS(CODEPROP_DATA_PORT)) {
if(uip_connected()) {
if(state == NULL) {
s.addr = 0;
s.count = 0;
PT_INIT(&s.tcpthread_pt);
process_poll(&codeprop_process);
tcp_markconn(uip_conn, &s);
/* process_post(PROCESS_BROADCAST, codeprop_event_quit, */
/* (process_data_t)NULL); */
} else {
PRINTF(("codeprop: uip_connected() and state != NULL\n"));
uip_abort();
}
}
recv_tcpthread(&s.tcpthread_pt);
if(uip_closed() || uip_aborted() || uip_timedout()) {
PRINTF(("codeprop: connection down\n"));
tcp_markconn(uip_conn, NULL);
}
}
}
}
/*---------------------------------------------------------------------*/
/** @} */

View file

@ -0,0 +1,52 @@
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
* @(#)$Id: codeprop-otf.h,v 1.1 2007/03/07 16:07:26 ksb Exp $
*/
#ifndef __CODEPROP_H__
#define __CODEPROP_H__
#include "contiki.h"
#define CODEPROP_DATA_PORT 6510
PROCESS_NAME(codeprop_process);
void codeprop_set_rate(clock_time_t time);
void codeprop_start_broadcast(unsigned int len);
void codeprop_exit_program(void);
int codeprop_start_program(void);
/* Segment writing object */
extern struct elfloader_output *codeprop_output;
extern char *codeprop_filesystem;
#endif /* __CODEPROP_H__ */

View file

@ -0,0 +1,101 @@
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* Copyright (c) 2007, Simon Berg
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
* @(#)$Id: elfloader-arch-otf.h,v 1.1 2007/03/07 16:07:26 ksb Exp $
*/
/**
* \addtogroup elfloader
* @{
*/
/**
* \defgroup elfloaderarch Architecture specific functionality for the ELF loader.
*
* The architecture specific functionality for the Contiki ELF loader
* has to be implemented for each processor type Contiki runs on.
*
* Since the ELF format is slightly different for different processor
* types, the Contiki ELF loader is divided into two parts: the
* generic ELF loader module (\ref elfloader) and the architecture
* specific part (this module). The architecture specific part deals
* with memory allocation, code and data relocation, and writing the
* relocated ELF code into program memory.
*
* To port the Contiki ELF loader to a new processor type, this module
* has to be implemented for the new processor type.
*
* @{
*/
/**
* \file
* Header file for the architecture specific parts of the Contiki ELF loader.
*
* \author
* Adam Dunkels <adam@sics.se>
*
*/
#ifndef __ELFLOADER_ARCH_H__
#define __ELFLOADER_ARCH_H__
#include "elfloader-otf.h"
/**
* \brief Perform a relocation.
* \param output The output object for the segment.
* \param sectionoffset The file offset at which the relocation can be found.
* \param sectionaddr The section start address (absolute runtime).
* \param rela A pointer to an ELF32 rela structure (struct elf32_rela).
* \param addr The relocated address.
*
* This function is called from the Contiki ELF loader to
* perform a relocation on a piece of code or data. The
* relocated address is calculated by the Contiki ELF
* loader, based on information in the ELF file, and it is
* the responsibility of this function to patch the
* executable code. The Contiki ELF loader passes a
* pointer to an ELF32 rela structure (struct elf32_rela)
* that contains information about how to patch the
* code. This information is different from processor to
* processor.
*/
int elfloader_arch_relocate(int input_fd,
struct elfloader_output *output,
unsigned int sectionoffset,
char *sectionaddr,
struct elf32_rela *rela, char *addr);
#endif /* __ELFLOADER_ARCH_H__ */
/** @} */
/** @} */

View file

@ -0,0 +1,680 @@
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* Copyright (c) 2007, Simon Berg
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
* @(#)$Id: elfloader-otf.c,v 1.1 2007/03/07 16:07:26 ksb Exp $
*/
#include "contiki.h"
#include "loader/elfloader-otf.h"
#include "loader/elfloader-arch-otf.h"
#include "cfs/cfs.h"
#include "loader/symtab.h"
#include <stddef.h>
#include <string.h>
#include <stdio.h>
#if 0
#include <stdio.h>
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...) do {} while (0)
#endif
#define EI_NIDENT 16
struct elf32_ehdr {
unsigned char e_ident[EI_NIDENT]; /* ident bytes */
elf32_half e_type; /* file type */
elf32_half e_machine; /* target machine */
elf32_word e_version; /* file version */
elf32_addr e_entry; /* start address */
elf32_off e_phoff; /* phdr file offset */
elf32_off e_shoff; /* shdr file offset */
elf32_word e_flags; /* file flags */
elf32_half e_ehsize; /* sizeof ehdr */
elf32_half e_phentsize; /* sizeof phdr */
elf32_half e_phnum; /* number phdrs */
elf32_half e_shentsize; /* sizeof shdr */
elf32_half e_shnum; /* number shdrs */
elf32_half e_shstrndx; /* shdr string index */
};
/* Values for e_type. */
#define ET_NONE 0 /* Unknown type. */
#define ET_REL 1 /* Relocatable. */
#define ET_EXEC 2 /* Executable. */
#define ET_DYN 3 /* Shared object. */
#define ET_CORE 4 /* Core file. */
struct elf32_shdr {
elf32_word sh_name; /* section name */
elf32_word sh_type; /* SHT_... */
elf32_word sh_flags; /* SHF_... */
elf32_addr sh_addr; /* virtual address */
elf32_off sh_offset; /* file offset */
elf32_word sh_size; /* section size */
elf32_word sh_link; /* misc info */
elf32_word sh_info; /* misc info */
elf32_word sh_addralign; /* memory alignment */
elf32_word sh_entsize; /* entry size if table */
};
/* sh_type */
#define SHT_NULL 0 /* inactive */
#define SHT_PROGBITS 1 /* program defined information */
#define SHT_SYMTAB 2 /* symbol table section */
#define SHT_STRTAB 3 /* string table section */
#define SHT_RELA 4 /* relocation section with addends*/
#define SHT_HASH 5 /* symbol hash table section */
#define SHT_DYNAMIC 6 /* dynamic section */
#define SHT_NOTE 7 /* note section */
#define SHT_NOBITS 8 /* no space section */
#define SHT_REL 9 /* relation section without addends */
#define SHT_SHLIB 10 /* reserved - purpose unknown */
#define SHT_DYNSYM 11 /* dynamic symbol table section */
#define SHT_LOPROC 0x70000000 /* reserved range for processor */
#define SHT_HIPROC 0x7fffffff /* specific section header types */
#define SHT_LOUSER 0x80000000 /* reserved range for application */
#define SHT_HIUSER 0xffffffff /* specific indexes */
struct elf32_rel {
elf32_addr r_offset; /* Location to be relocated. */
elf32_word r_info; /* Relocation type and symbol index. */
};
struct elf32_sym {
elf32_word st_name; /* String table index of name. */
elf32_addr st_value; /* Symbol value. */
elf32_word st_size; /* Size of associated object. */
unsigned char st_info; /* Type and binding information. */
unsigned char st_other; /* Reserved (not used). */
elf32_half st_shndx; /* Section index of symbol. */
};
#define ELF32_R_SYM(info) ((info) >> 8)
#define ELF32_R_TYPE(info) ((unsigned char)(info))
struct relevant_section {
unsigned char number;
unsigned int offset;
char *address;
};
char elfloader_unknown[30]; /* Name that caused link error. */
struct process **elfloader_autostart_processes;
static struct relevant_section bss, data, rodata, text;
const static unsigned char elf_magic_header[] =
{0x7f, 0x45, 0x4c, 0x46, /* 0x7f, 'E', 'L', 'F' */
0x01, /* Only 32-bit objects. */
0x01, /* Only LSB data. */
0x01, /* Only ELF version 1. */
};
/* Copy data from the elf file to a segment */
static int
copy_segment_data(int input_fd, unsigned int offset,
struct elfloader_output *output, unsigned int len)
{
char buffer[16];
int res;
if (cfs_seek(input_fd, offset) != offset) return ELFLOADER_INPUT_ERROR;
while(len > sizeof(buffer)) {
res = cfs_read(input_fd, buffer, sizeof(buffer));
if (res != sizeof(buffer)) return ELFLOADER_INPUT_ERROR;
res = elfloader_output_write_segment(output, buffer, sizeof(buffer));
if (res != sizeof(buffer)) return ELFLOADER_OUTPUT_ERROR;
len -= sizeof(buffer);
}
res = cfs_read(input_fd, buffer, len);
if (res != len) return ELFLOADER_INPUT_ERROR;
res = elfloader_output_write_segment(output, buffer, len);
if (res != len) return ELFLOADER_OUTPUT_ERROR;
return ELFLOADER_OK;
}
static int
seek_read(int fd, unsigned int offset, char *buf, int len)
{
if (cfs_seek(fd, offset) != offset) return -1;
return cfs_read(fd, buf, len);
}
static void *
find_local_symbol(int input_fd, const char *symbol,
unsigned int symtab, unsigned short symtabsize,
unsigned int strtab)
{
struct elf32_sym s;
unsigned int a;
char name[30];
struct relevant_section *sect;
int ret;
for(a = symtab; a < symtab + symtabsize; a += sizeof(s)) {
ret = seek_read(input_fd, a, (char *)&s, sizeof(s));
if (ret < 0) return NULL;
if(s.st_name != 0) {
ret = seek_read(input_fd, strtab + s.st_name, name, sizeof(name));
if (ret < 0) return NULL;
if(strcmp(name, symbol) == 0) {
if(s.st_shndx == bss.number) {
sect = &bss;
} else if(s.st_shndx == data.number) {
sect = &data;
} else if(s.st_shndx == text.number) {
sect = &text;
} else {
return NULL;
}
return &(sect->address[s.st_value]);
}
}
}
return NULL;
}
/*---------------------------------------------------------------------------*/
static int
relocate_section(int input_fd,
struct elfloader_output *output,
unsigned int section, unsigned short size,
unsigned int sectionaddr,
char *sectionbase,
unsigned int strs,
unsigned int strtab,
unsigned int symtab, unsigned short symtabsize,
unsigned char using_relas)
{
/* sectionbase added; runtime start address of current section */
struct elf32_rela rela; /* Now used both for rel and rela data! */
int rel_size = 0;
struct elf32_sym s;
unsigned int a;
char name[30];
char *addr;
struct relevant_section *sect;
int ret;
/* determine correct relocation entry sizes */
if(using_relas) {
rel_size = sizeof(struct elf32_rela);
} else {
rel_size = sizeof(struct elf32_rel);
}
for(a = section; a < section + size; a += rel_size) {
ret = seek_read(input_fd, a, (char *)&rela, rel_size);
if (ret < 0) return ELFLOADER_INPUT_ERROR;
ret = seek_read(input_fd,
(symtab +
sizeof(struct elf32_sym) * ELF32_R_SYM(rela.r_info)),
(char *)&s, sizeof(s));
if (ret < 0) return ELFLOADER_INPUT_ERROR;
if(s.st_name != 0) {
ret = seek_read(input_fd, strtab + s.st_name, name, sizeof(name));
if (ret < 0) return ELFLOADER_INPUT_ERROR;
PRINTF("name: %s\n", name);
addr = (char *)symtab_lookup(name);
/* ADDED */
if(addr == NULL) {
PRINTF("name not found in global: %s\n", name);
addr = find_local_symbol(input_fd, name, symtab, symtabsize, strtab);
PRINTF("found address %p\n", addr);
}
if(addr == NULL) {
if(s.st_shndx == bss.number) {
sect = &bss;
} else if(s.st_shndx == data.number) {
sect = &data;
} else if(s.st_shndx == rodata.number) {
sect = &rodata;
} else if(s.st_shndx == text.number) {
sect = &text;
} else {
PRINTF("elfloader unknown name: '%30s'\n", name);
memcpy(elfloader_unknown, name, sizeof(elfloader_unknown));
elfloader_unknown[sizeof(elfloader_unknown) - 1] = 0;
return ELFLOADER_SYMBOL_NOT_FOUND;
}
addr = sect->address;
}
} else {
if(s.st_shndx == bss.number) {
sect = &bss;
} else if(s.st_shndx == data.number) {
sect = &data;
} else if(s.st_shndx == rodata.number) {
sect = &rodata;
} else if(s.st_shndx == text.number) {
sect = &text;
} else {
return ELFLOADER_SEGMENT_NOT_FOUND;
}
addr = sect->address;
}
#if 0 /* We don't know how big the relocation is or even if we need to read it.
Let the architecture dependant code decide */
if (!using_relas) {
/* copy addend to rela structure */
ret = seek_read(fd, sectionaddr + rela.r_offset, &rela.r_addend, 4);
if (ret < 0) return ELFLOADER_INPUT_ERROR;
}
#endif
{
/* Copy data up to the next relocation */
unsigned int offset = elfloader_output_segment_offset(output);
if (rela.r_offset < offset) {
PRINTF("elfloader relocation out of offset order\n");
}
if (rela.r_offset > offset) {
ret = copy_segment_data(input_fd, offset+sectionaddr, output,
rela.r_offset - offset);
if (ret != ELFLOADER_OK) return ret;
}
}
ret = elfloader_arch_relocate(input_fd, output, sectionaddr, sectionbase,
&rela, addr);
if (ret != ELFLOADER_OK) return ret;
}
return ELFLOADER_OK;
}
/*---------------------------------------------------------------------------*/
static void *
find_program_processes(int input_fd,
unsigned int symtab, unsigned short size,
unsigned int strtab)
{
struct elf32_sym s;
unsigned int a;
char name[30];
for(a = symtab; a < symtab + size; a += sizeof(s)) {
seek_read(input_fd, a, (char *)&s, sizeof(s));
if(s.st_name != 0) {
seek_read(input_fd, strtab + s.st_name, name, sizeof(name));
if(strcmp(name, "autostart_processes") == 0) {
return &data.address[s.st_value];
}
}
}
return NULL;
/* return find_local_symbol(fd, "autostart_processes", symtab, size, strtab); */
}
/*---------------------------------------------------------------------------*/
void
elfloader_init(void)
{
elfloader_autostart_processes = NULL;
}
/*---------------------------------------------------------------------------*/
#if 0
static void
print_chars(unsigned char *ptr, int num)
{
int i;
for(i = 0; i < num; ++i) {
PRINTF("%d", ptr[i]);
if(i == num - 1) {
PRINTF("\n");
} else {
PRINTF(", ");
}
}
}
#endif /* 0 */
static int
copy_segment(int input_fd,
struct elfloader_output *output,
unsigned int section, unsigned short size,
unsigned int sectionaddr,
char *sectionbase,
unsigned int strs,
unsigned int strtab,
unsigned int symtab, unsigned short symtabsize,
unsigned char using_relas,
unsigned int seg_size, unsigned int seg_type)
{
unsigned int offset;
int ret;
ret = elfloader_output_start_segment(output, seg_type,sectionbase, seg_size);
if (ret != ELFLOADER_OK) return ret;
ret = relocate_section(input_fd, output,
section, size,
sectionaddr,
sectionbase,
strs,
strtab,
symtab, symtabsize, using_relas);
if (ret != ELFLOADER_OK) return ret;
offset = elfloader_output_segment_offset(output);
ret = copy_segment_data(input_fd, offset+sectionaddr, output,seg_size - offset);
if (ret != ELFLOADER_OK) return ret;
return elfloader_output_end_segment(output);
}
/*---------------------------------------------------------------------------*/
int
elfloader_load(int input_fd, struct elfloader_output *output)
{
struct elf32_ehdr ehdr;
struct elf32_shdr shdr;
struct elf32_shdr strtable;
unsigned int strs;
unsigned int shdrptr;
unsigned int nameptr;
char name[12];
int i;
unsigned short shdrnum, shdrsize;
unsigned char using_relas = -1;
unsigned short textoff = 0, textsize, textrelaoff = 0, textrelasize;
unsigned short dataoff = 0, datasize, datarelaoff = 0, datarelasize;
unsigned short rodataoff = 0, rodatasize, rodatarelaoff = 0, rodatarelasize;
unsigned short symtaboff = 0, symtabsize;
unsigned short strtaboff = 0, strtabsize;
unsigned short bsssize = 0;
struct process **process;
int ret;
elfloader_unknown[0] = 0;
/* The ELF header is located at the start of the buffer. */
ret = seek_read(input_fd, 0, (char *)&ehdr, sizeof(ehdr));
if (ret != sizeof(ehdr)) return ELFLOADER_INPUT_ERROR;
/* print_chars(ehdr.e_ident, sizeof(elf_magic_header));
print_chars(elf_magic_header, sizeof(elf_magic_header));*/
/* Make sure that we have a correct and compatible ELF header. */
if(memcmp(ehdr.e_ident, elf_magic_header, sizeof(elf_magic_header)) != 0) {
PRINTF("ELF header problems\n");
return ELFLOADER_BAD_ELF_HEADER;
}
/* Grab the section header. */
shdrptr = ehdr.e_shoff;
ret = seek_read(input_fd, shdrptr, (char *)&shdr, sizeof(shdr));
if (ret != sizeof(shdr)) return ELFLOADER_INPUT_ERROR;
/* Get the size and number of entries of the section header. */
shdrsize = ehdr.e_shentsize;
shdrnum = ehdr.e_shnum;
/* The string table section: holds the names of the sections. */
ret = seek_read(input_fd, ehdr.e_shoff + shdrsize * ehdr.e_shstrndx,
(char *)&strtable, sizeof(strtable));
if (ret != sizeof(strtable)) return ELFLOADER_INPUT_ERROR;
/* Get a pointer to the actual table of strings. This table holds
the names of the sections, not the names of other symbols in the
file (these are in the sybtam section). */
strs = strtable.sh_offset;
/* Go through all sections and pick out the relevant ones. The
".text" segment holds the actual code from the ELF file, the
".data" segment contains initialized data, the ".rodata" segment
contains read-only data, the ".bss" segment holds the size of the
unitialized data segment. The ".rel[a].text" and ".rel[a].data"
segments contains relocation information for the contents of the
".text" and ".data" segments, respectively. The ".symtab" segment
contains the symbol table for this file. The ".strtab" segment
points to the actual string names used by the symbol table.
In addition to grabbing pointers to the relevant sections, we
also save the section number for resolving addresses in the
relocator code.
*/
/* Initialize the segment sizes to zero so that we can check if
their sections was found in the file or not. */
textsize = textrelasize = datasize = datarelasize =
rodatasize = rodatarelasize = symtabsize = strtabsize = 0;
bss.number = data.number = rodata.number = text.number = -1;
shdrptr = ehdr.e_shoff;
for(i = 0; i < shdrnum; ++i) {
ret = seek_read(input_fd, shdrptr, (char *)&shdr, sizeof(shdr));
if (ret != sizeof(shdr)) return ELFLOADER_INPUT_ERROR;
/* The name of the section is contained in the strings table. */
nameptr = strs + shdr.sh_name;
ret = seek_read(input_fd, nameptr, name, sizeof(name));
if (ret != sizeof(name)) return ELFLOADER_INPUT_ERROR;
/* Match the name of the section with a predefined set of names
(.text, .data, .bss, .rela.text, .rela.data, .symtab, and
.strtab). */
/* added support for .rodata, .rel.text and .rel.data). */
if(strncmp(name, ".text", 5) == 0) {
textoff = shdr.sh_offset;
textsize = shdr.sh_size;
text.number = i;
text.offset = textoff;
} else if(strncmp(name, ".rel.text", 9) == 0) {
using_relas = 0;
textrelaoff = shdr.sh_offset;
textrelasize = shdr.sh_size;
} else if(strncmp(name, ".rela.text", 10) == 0) {
using_relas = 1;
textrelaoff = shdr.sh_offset;
textrelasize = shdr.sh_size;
} else if(strncmp(name, ".data", 5) == 0) {
dataoff = shdr.sh_offset;
datasize = shdr.sh_size;
data.number = i;
data.offset = dataoff;
} else if(strncmp(name, ".rodata", 7) == 0) {
/* read-only data handled the same way as regular text section */
rodataoff = shdr.sh_offset;
rodatasize = shdr.sh_size;
rodata.number = i;
rodata.offset = rodataoff;
} else if(strncmp(name, ".rel.rodata", 11) == 0) {
/* using elf32_rel instead of rela */
using_relas = 0;
rodatarelaoff = shdr.sh_offset;
rodatarelasize = shdr.sh_size;
} else if(strncmp(name, ".rela.rodata", 12) == 0) {
using_relas = 1;
rodatarelaoff = shdr.sh_offset;
rodatarelasize = shdr.sh_size;
} else if(strncmp(name, ".rel.data", 9) == 0) {
/* using elf32_rel instead of rela */
using_relas = 0;
datarelaoff = shdr.sh_offset;
datarelasize = shdr.sh_size;
} else if(strncmp(name, ".rela.data", 10) == 0) {
using_relas = 1;
datarelaoff = shdr.sh_offset;
datarelasize = shdr.sh_size;
} else if(strncmp(name, ".symtab", 7) == 0) {
symtaboff = shdr.sh_offset;
symtabsize = shdr.sh_size;
} else if(strncmp(name, ".strtab", 7) == 0) {
strtaboff = shdr.sh_offset;
strtabsize = shdr.sh_size;
} else if(strncmp(name, ".bss", 4) == 0) {
bsssize = shdr.sh_size;
bss.number = i;
bss.offset = 0;
}
/* Move on to the next section header. */
shdrptr += shdrsize;
}
if(symtabsize == 0) {
return ELFLOADER_NO_SYMTAB;
}
if(strtabsize == 0) {
return ELFLOADER_NO_STRTAB;
}
if(textsize == 0) {
return ELFLOADER_NO_TEXT;
}
if (bsssize) {
bss.address = (char *)
elfloader_output_alloc_segment(output, ELFLOADER_SEG_BSS, bsssize);
if (!bss.address) return ELFLOADER_OUTPUT_ERROR;
}
if (datasize) {
data.address = (char *)
elfloader_output_alloc_segment(output,ELFLOADER_SEG_DATA,datasize);
if (!data.address) return ELFLOADER_OUTPUT_ERROR;
}
if (textsize) {
text.address = (char *)
elfloader_output_alloc_segment(output,ELFLOADER_SEG_TEXT,textsize);
if (!text.address) return ELFLOADER_OUTPUT_ERROR;
}
if (rodatasize) {
rodata.address = (char *)
elfloader_output_alloc_segment(output,ELFLOADER_SEG_RODATA,rodatasize);
if (!rodata.address) return ELFLOADER_OUTPUT_ERROR;
}
/* printf("bss base address: bss.address = 0x%08x\n", bss.address);
printf("data base address: data.address = 0x%08x\n", data.address);
printf("text base address: text.address = 0x%08x\n", text.address);
printf("rodata base address: rodata.address = 0x%08x\n", rodata.address); */
/* If we have text segment relocations, we process them. */
PRINTF("elfloader: relocate text\n");
if(textrelasize > 0) {
ret = copy_segment(input_fd, output,
textrelaoff, textrelasize,
textoff,
text.address,
strs,
strtaboff,
symtaboff, symtabsize, using_relas,
textsize, ELFLOADER_SEG_TEXT);
if(ret != ELFLOADER_OK) {
return ret;
}
}
/* If we have any rodata segment relocations, we process them too. */
PRINTF("elfloader: relocate rodata\n");
if(rodatarelasize > 0) {
ret = copy_segment(input_fd, output,
rodatarelaoff, rodatarelasize,
rodataoff,
rodata.address,
strs,
strtaboff,
symtaboff, symtabsize, using_relas,
rodatasize, ELFLOADER_SEG_RODATA);
if(ret != ELFLOADER_OK) {
PRINTF("elfloader: data failed\n");
return ret;
}
}
/* If we have any data segment relocations, we process them too. */
PRINTF("elfloader: relocate data\n");
if(datarelasize > 0) {
ret = copy_segment(input_fd, output,
datarelaoff, datarelasize,
dataoff,
data.address,
strs,
strtaboff,
symtaboff, symtabsize, using_relas,
datasize, ELFLOADER_SEG_DATA);
if(ret != ELFLOADER_OK) {
PRINTF("elfloader: data failed\n");
return ret;
}
ret = elfloader_output_end_segment(output);
if (ret != ELFLOADER_OK) return ret;
}
/* Write text and rodata segment into flash and data segment into RAM. */
/* elfloader_arch_write_rom(fd, textoff, textsize, text.address); */
/* elfloader_arch_write_rom(fd, rodataoff, rodatasize, rodata.address); */
/* memset(bss.address, 0, bsssize); */
/* seek_read(fd, dataoff, data.address, datasize); */
{
/* Write zeros to bss segment */
unsigned int len = bsssize;
static const char zeros[16] = {0};
ret = elfloader_output_start_segment(output, ELFLOADER_SEG_BSS,
bss.address,bsssize);
if (ret != ELFLOADER_OK) return ret;
while(len > sizeof(zeros)) {
ret = elfloader_output_write_segment(output, zeros, sizeof(zeros));
if (ret != sizeof(zeros)) return ELFLOADER_OUTPUT_ERROR;
len -= sizeof(zeros);
}
ret = elfloader_output_write_segment(output, zeros, len);
if (ret != len) return ELFLOADER_OUTPUT_ERROR;
}
PRINTF("elfloader: autostart search\n");
process = find_local_symbol(input_fd, "autostart_processes", symtaboff, symtabsize, strtaboff);
if(process != NULL) {
PRINTF("elfloader: autostart found\n");
elfloader_autostart_processes = process;
return ELFLOADER_OK;
} else {
PRINTF("elfloader: no autostart\n");
process = find_program_processes(input_fd, symtaboff, symtabsize, strtaboff);
if(process != NULL) {
PRINTF("elfloader: FOUND PRG\n");
}
return ELFLOADER_NO_STARTPOINT;
}
}
/*---------------------------------------------------------------------------*/

View file

@ -0,0 +1,314 @@
/**
* \addtogroup loader
* @{
*/
/**
* \defgroup elfloader The Contiki ELF loader
*
* The Contiki ELF loader links, relocates, and loads ELF
* (Executable Linkable Format) object files into a running Contiki
* system.
*
* ELF is a standard format for relocatable object code and executable
* files. ELF is the standard program format for Linux, Solaris, and
* other operating systems.
*
* An ELF file contains either a standalone executable program or a
* program module. The file contains both the program code, the
* program data, as well as information about how to link, relocate,
* and load the program into a running system.
*
* The ELF file is composed of a set of sections. The sections contain
* program code, data, or relocation information, but can also contain
* debugging information.
*
* To link and relocate an ELF file, the Contiki ELF loader first
* parses the ELF file structure to find the appropriate ELF
* sections. It then allocates memory for the program code and data in
* ROM and RAM, respectively. After allocating memory, the Contiki ELF
* loader starts relocating the code found in the ELF file.
*
* @{
*/
/**
* \file
* Header file for the Contiki ELF loader.
* \author
* Adam Dunkels <adam@sics.se>
* Simon Berg <ksb@users.sourceforge.net>
*
*/
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* Copyright (c) 2007, Simon Berg
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
*/
#ifndef __ELFLOADER_H__
#define __ELFLOADER_H__
#include "cfs/cfs.h"
/**
* Return value from elfloader_load() indicating that loading worked.
*/
#define ELFLOADER_OK 0
/**
* Return value from elfloader_load() indicating that the ELF file had
* a bad header.
*/
#define ELFLOADER_BAD_ELF_HEADER 1
/**
* Return value from elfloader_load() indicating that no symbol table
* could be find in the ELF file.
*/
#define ELFLOADER_NO_SYMTAB 2
/**
* Return value from elfloader_load() indicating that no string table
* could be find in the ELF file.
*/
#define ELFLOADER_NO_STRTAB 3
/**
* Return value from elfloader_load() indicating that the size of the
* .text segment was zero.
*/
#define ELFLOADER_NO_TEXT 4
/**
* Return value from elfloader_load() indicating that a symbol
* specific symbol could not be found.
*
* If this value is returned from elfloader_load(), the symbol has
* been copied into the elfloader_unknown[] array.
*/
#define ELFLOADER_SYMBOL_NOT_FOUND 5
/**
* Return value from elfloader_load() indicating that one of the
* required segments (.data, .bss, or .text) could not be found.
*/
#define ELFLOADER_SEGMENT_NOT_FOUND 6
/**
* Return value from elfloader_load() indicating that no starting
* point could be found in the loaded module.
*/
#define ELFLOADER_NO_STARTPOINT 7
/**
* Return value from elfloader_load() indicating that the ELF file contained
* a relocation type that the implementation can't handle.
*/
#define ELFLOADER_UNHANDLED_RELOC 8
/**
* Return value from elfloader_load() indicating that the offset for
* a relative addressing mode was too big.
*/
#define ELFLOADER_OUTOF_RANGE 9
/**
* Return value from elfloader_load() indicating that the relocations
* where not sorted by offset
*/
#define ELFLOADER_RELOC_NOT_SORTED 10
/**
* Return value from elfloader_load() indicating that reading from the
* ELF file failed in some way.
*/
#define ELFLOADER_INPUT_ERROR 11
/**
* Return value from elfloader_load() indicating that writing to a segment
* failed.
*/
#define ELFLOADER_OUTPUT_ERROR 12
#define ELFLOADER_SEG_TEXT 1
#define ELFLOADER_SEG_RODATA 2
#define ELFLOADER_SEG_DATA 3
#define ELFLOADER_SEG_BSS 4
/**
* elfloader output object
*
* This object defines methods (callbacks) for writing the segments to memory.
* It can be extended by the user to include any necessary state.
*/
struct elfloader_output {
const struct elfloader_output_ops *ops;
};
/**
* \brief Allocate a new segment
* \param input The output object
* \param type Type of segment
* \param size Size of segment in bytes
* \return A pointer to the start of the segment.
*
* The returned address doesn't need to correspond to any real memory,
* since it's only used for calculating the relocations.
*/
void *elfloader_allocate_segment(struct elfloader_output *output,
unsigned int type, int size);
/**
* \brief Start writing to a new segment
* \param input The output object
* \param type Type of segment
* \param addr Address of segment from elfloader_allocate_segment
* \param size Size of segment in bytes
* \return Returns ELFLOADER_OK if successful, otherwise an error code
*
*/
int elfloader_start_segment(struct elfloader_output *output,
unsigned int type, void *addr, int size);
/**
* \brief Mark end of segment
* \param input The output object
* \return Zero if successful
*/
int elfloader_end_segment(struct elfloader_output *output);
/**
* \brief Write data to a segment
* \param input The output object
* \param buf Data to be written
* \param len Length of data
* \return The number of bytes actually written, or negative if failed.
*/
int elfloader_write_segment(struct elfloader_output *output, const char *buf,
unsigned int len);
/**
* \brief Get the current offset in the file where the next data will
* be written.
* \param input The output object
* \return The current offset.
*/
unsigned int elfloader_segment_offset(struct elfloader_output *output);
#define elfloader_output_alloc_segment(output, type, size) \
((output)->ops->allocate_segment(output, type, size))
#define elfloader_output_start_segment(output, type, addr, size) \
((output)->ops->start_segment(output, type, addr, size))
#define elfloader_output_end_segment(output) \
((output)->ops->end_segment(output))
#define elfloader_output_write_segment(output, buf, len) \
((output)->ops->write_segment(output, buf, len))
#define elfloader_output_segment_offset(output) \
((output)->ops->segment_offset(output))
struct elfloader_output_ops {
void * (*allocate_segment)(struct elfloader_output *output,
unsigned int type, int size);
int (*start_segment)(struct elfloader_output *output,
unsigned int type, void *addr, int size);
int (*end_segment)(struct elfloader_output *output);
int (*write_segment)(struct elfloader_output *output, const char *buf,
unsigned int len);
unsigned int (*segment_offset)(struct elfloader_output *output);
};
/**
* elfloader initialization function.
*
* This function should be called at boot up to initilize the elfloader.
*/
void elfloader_init(void);
/**
* \brief Load and relocate an ELF file.
* \param input Input object defining how to read from the ELF file
* \param output Output object defining how to create and write to seegments.
* \return ELFLOADER_OK if loading and relocation worked.
* Otherwise an error value.
*
* If the function is able to load the ELF file, a pointer
* to the process structure in the model is stored in the
* elfloader_loaded_process variable.
*
*/
int elfloader_load(int input_fd,
struct elfloader_output *output);
/**
* A pointer to the processes loaded with elfloader_load().
*/
extern struct process **elfloader_autostart_processes;
/**
* If elfloader_load() could not find a specific symbol, it is copied
* into this array.
*/
extern char elfloader_unknown[30];
#ifdef ELFLOADER_CONF_DATAMEMORY_SIZE
#define ELFLOADER_DATAMEMORY_SIZE ELFLOADER_CONF_DATAMEMORY_SIZE
#else
#define ELFLOADER_DATAMEMORY_SIZE 0x100
#endif
#ifdef ELFLOADER_CONF_TEXTMEMORY_SIZE
#define ELFLOADER_TEXTMEMORY_SIZE ELFLOADER_CONF_TEXTMEMORY_SIZE
#else
#define ELFLOADER_TEXTMEMORY_SIZE 0x100
#endif
typedef unsigned long elf32_word;
typedef signed long elf32_sword;
typedef unsigned short elf32_half;
typedef unsigned long elf32_off;
typedef unsigned long elf32_addr;
struct elf32_rela {
elf32_addr r_offset; /* Location to be relocated. */
elf32_word r_info; /* Relocation type and symbol index. */
elf32_sword r_addend; /* Addend. */
};
#endif /* __ELFLOADER_H__ */
/** @} */
/** @} */

View file

@ -0,0 +1,140 @@
#ifndef __RAM_SEGMENTS_C__1POIF5E8U4__
#define __RAM_SEGMENTS_C__1POIF5E8U4__
#include <loader/elfloader-otf.h>
#include <loader/codeprop-otf.h>
#include <sys/types.h>
#include <lib/malloc.h>
#include <string.h>
#include <stdio.h>
struct ram_output
{
struct elfloader_output output;
char *base;
unsigned int offset;
void *text;
void *rodata;
void *data;
void *bss;
};
static void *
allocate_segment(struct elfloader_output * const output,
unsigned int type, int size)
{
struct ram_output * const ram = (struct ram_output *)output;
void *block = malloc(size);
if (!block) return NULL;
switch(type) {
case ELFLOADER_SEG_TEXT:
if (ram->text) free(ram->text);
ram->text = block;
break;
case ELFLOADER_SEG_RODATA:
if (ram->rodata) free(ram->rodata);
ram->rodata = block;
break;
case ELFLOADER_SEG_DATA:
if (ram->data) free(ram->data);
ram->data = block;
break;
case ELFLOADER_SEG_BSS:
if (ram->bss) free(ram->bss);
ram->bss = block;
break;
default:
free(block);
return NULL;
}
return block;
}
static int
start_segment(struct elfloader_output *output,
unsigned int type, void *addr, int size)
{
((struct ram_output*)output)->base = addr;
((struct ram_output*)output)->offset = 0;
return ELFLOADER_OK;
}
static int
end_segment(struct elfloader_output *output)
{
return ELFLOADER_OK;
}
static int
write_segment(struct elfloader_output *output, const char *buf,
unsigned int len)
{
struct ram_output * const ram = (struct ram_output *)output;
memcpy(ram->base + ram->offset, buf, len);
ram->offset += len;
return len;
}
static unsigned int
segment_offset(struct elfloader_output *output)
{
return ((struct ram_output*)output)->offset;
}
static const struct elfloader_output_ops elf_output_ops =
{
allocate_segment,
start_segment,
end_segment,
write_segment,
segment_offset
};
static struct ram_output seg_output = {
{&elf_output_ops},
NULL,
0,
NULL,
NULL,
NULL,
NULL
};
PROCESS(ram_segments_cleanup_process, "RAM segments cleanup process");
PROCESS_THREAD(ram_segments_cleanup_process, ev, data)
{
PROCESS_BEGIN();
while(1) {
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_EXITED
|| ev == PROCESS_EVENT_EXIT);
if (ev == PROCESS_EVENT_EXIT) break;
if (elfloader_autostart_processes ||
elfloader_autostart_processes[0] == data) {
PROCESS_PAUSE(); /* Let the process exit */
if (seg_output.text) {
free(seg_output.text);
seg_output.text = NULL;
}
if (seg_output.rodata) {
free(seg_output.rodata);
seg_output.rodata = NULL;
}
if (seg_output.data) {
free(seg_output.data);
seg_output.data = NULL;
}
if (seg_output.bss) {
free(seg_output.bss);
seg_output.bss = NULL;
}
elfloader_autostart_processes = NULL;
}
}
PROCESS_END();
}
struct elfloader_output *codeprop_output = &seg_output.output;
#endif /* __RAM_SEGMENTS_C__1POIF5E8U4__ */

View file

@ -0,0 +1,6 @@
#ifndef __RAM_SEGMENTS_H__8EDB9N09UD__
#define __RAM_SEGMENTS_H__8EDB9N09UD__
PROCESS_NAME(ram_segments_cleanup_process);
#endif /* __RAM_SEGMENTS_H__8EDB9N09UD__ */

View file

@ -68,15 +68,13 @@ _sbrk(int incr)
{
extern char __heap_start__; /* Defined by the linker */
extern char __heap_end__; /* Defined by the linker */
static char *heap_end;
static char *heap_end = &__heap_start__;
char *prev_heap_end;
if (heap_end == 0) {
heap_end = &__heap_start__;
}
prev_heap_end = heap_end;
if (heap_end + incr > &__heap_end__) {
_write (2, "Heap full\n", 10);
printf("Heap full (requested %d, available %d)\n",
incr, &__heap_end__ - heap_end);
errno = ENOMEM;
return (caddr_t)-1;
}

View file

@ -0,0 +1,498 @@
/***********************************************************************/
/* */
/* startup_SAM7S.S: Startup file for Atmel AT91SAM7S device series */
/* */
/***********************************************************************/
/* ported to arm-elf-gcc / WinARM by Martin Thomas, KL, .de */
/* <eversmith@heizung-thomas.de> */
/* modifications Copyright Martin Thomas 2005 */
/* */
/* Based on a file that has been a part of the uVision/ARM */
/* development tools, Copyright KEIL ELEKTRONIK GmbH 2002-2004 */
/***********************************************************************/
/*
Modifications by Martin Thomas:
- added handling of execption vectors in RAM ("ramfunc")
- added options to remap the interrupt vectors to RAM
(see makefile for switch-option)
- replaced all ";" and "#" for comments with // or / * * /
- added C++ ctor handling
- .text in RAM for debugging (RAM_RUN)
*/
/*
Modifications by Simon Berg
- added stack segment
- running program as system by defining RUN_AS_SYSTEM
*/
// mt: this file should not be used with the Configuration Wizard
// since a lot of changes have been done for the WinARM/gcc example
/*
// *** <<< Use Configuration Wizard in Context Menu >>> ***
*/
// *** Startup Code (executed after Reset) ***
// Standard definitions of Mode bits and Interrupt (I & F) flags in PSRs
.equ Mode_USR, 0x10
.equ Mode_FIQ, 0x11
.equ Mode_IRQ, 0x12
.equ Mode_SVC, 0x13
.equ Mode_ABT, 0x17
.equ Mode_UND, 0x1B
.equ Mode_SYS, 0x1F
.equ I_Bit, 0x80 /* when I bit is set, IRQ is disabled */
.equ F_Bit, 0x40 /* when F bit is set, FIQ is disabled */
// Internal Memory Base Addresses
.equ FLASH_BASE, 0x00100000
.equ RAM_BASE, 0x00200000
/*
// <h> Stack Configuration
// <o> Top of Stack Address <0x0-0xFFFFFFFF:4>
// <h> Stack Sizes (in Bytes)
// <o1> Undefined Mode <0x0-0xFFFFFFFF:4>
// <o2> Supervisor Mode <0x0-0xFFFFFFFF:4>
// <o3> Abort Mode <0x0-0xFFFFFFFF:4>
// <o4> Fast Interrupt Mode <0x0-0xFFFFFFFF:4>
// <o5> Interrupt Mode <0x0-0xFFFFFFFF:4>
// <o6> User/System Mode <0x0-0xFFFFFFFF:4>
// </h>
// </h>
*/
.equ Top_Stack, 0x00204000
.equ UND_Stack_Size, 0x00000004
.equ SVC_Stack_Size, 0x00000400
.equ ABT_Stack_Size, 0x00000004
.equ FIQ_Stack_Size, 0x00000004
.equ IRQ_Stack_Size, 0x00000400
.equ USR_Stack_Size, 0x00000400
.bss
.section .stack , "aw", %nobits
USR_Stack_Start:
.skip USR_Stack_Size
USR_Stack_End:
IRQ_Stack_Start:
.skip IRQ_Stack_Size
IRQ_Stack_End:
FIQ_Stack_Start:
.skip FIQ_Stack_Size
FIQ_Stack_End:
ABT_Stack_Start:
.skip ABT_Stack_Size
ABT_Stack_End:
SVC_Stack_Start:
.skip SVC_Stack_Size
SVC_Stack_End:
UND_Stack_Start:
.skip UND_Stack_Size
UND_Stack_End:
// Embedded Flash Controller (EFC) definitions
.equ EFC_BASE, 0xFFFFFF00 /* EFC Base Address */
.equ EFC_FMR, 0x60 /* EFC_FMR Offset */
/*
// <e> Embedded Flash Controller (EFC)
// <o1.16..23> FMCN: Flash Microsecond Cycle Number <0-255>
// <i> Number of Master Clock Cycles in 1us
// <o1.8..9> FWS: Flash Wait State
// <0=> Read: 1 cycle / Write: 2 cycles
// <1=> Read: 2 cycle / Write: 3 cycles
// <2=> Read: 3 cycle / Write: 4 cycles
// <3=> Read: 4 cycle / Write: 4 cycles
// </e>
*/
.equ EFC_SETUP, 1
.equ EFC_FMR_Val, 0x00320100
// Watchdog Timer (WDT) definitions
.equ WDT_BASE, 0xFFFFFD40 /* WDT Base Address */
.equ WDT_MR, 0x04 /* WDT_MR Offset */
/*
// <e> Watchdog Timer (WDT)
// <o1.0..11> WDV: Watchdog Counter Value <0-4095>
// <o1.16..27> WDD: Watchdog Delta Value <0-4095>
// <o1.12> WDFIEN: Watchdog Fault Interrupt Enable
// <o1.13> WDRSTEN: Watchdog Reset Enable
// <o1.14> WDRPROC: Watchdog Reset Processor
// <o1.28> WDDBGHLT: Watchdog Debug Halt
// <o1.29> WDIDLEHLT: Watchdog Idle Halt
// <o1.15> WDDIS: Watchdog Disable
// </e>
*/
.equ WDT_SETUP, 1
.equ WDT_MR_Val, 0x00008000 // Disable watchdog
// Power Mangement Controller (PMC) definitions
.equ PMC_BASE, 0xFFFFFC00 /* PMC Base Address */
.equ PMC_MOR, 0x20 /* PMC_MOR Offset */
.equ PMC_MCFR, 0x24 /* PMC_MCFR Offset */
.equ PMC_PLLR, 0x2C /* PMC_PLLR Offset */
.equ PMC_MCKR, 0x30 /* PMC_MCKR Offset */
.equ PMC_SR, 0x68 /* PMC_SR Offset */
.equ PMC_MOSCEN, (1<<0) /* Main Oscillator Enable */
.equ PMC_OSCBYPASS, (1<<1) /* Main Oscillator Bypass */
.equ PMC_OSCOUNT, (0xFF<<8) /* Main OScillator Start-up Time */
.equ PMC_DIV, (0xFF<<0) /* PLL Divider */
.equ PMC_PLLCOUNT, (0x3F<<8) /* PLL Lock Counter */
.equ PMC_OUT, (0x03<<14) /* PLL Clock Frequency Range */
.equ PMC_MUL, (0x7FF<<16) /* PLL Multiplier */
.equ PMC_USBDIV, (0x03<<28) /* USB Clock Divider */
.equ PMC_CSS, (3<<0) /* Clock Source Selection */
.equ PMC_PRES, (7<<2) /* Prescaler Selection */
.equ PMC_MOSCS, (1<<0) /* Main Oscillator Stable */
.equ PMC_LOCK, (1<<2) /* PLL Lock Status */
/*
// <e> Power Mangement Controller (PMC)
// <h> Main Oscillator
// <o1.0> MOSCEN: Main Oscillator Enable
// <o1.1> OSCBYPASS: Oscillator Bypass
// <o1.8..15> OSCCOUNT: Main Oscillator Startup Time <0-255>
// </h>
// <h> Phase Locked Loop (PLL)
// <o2.0..7> DIV: PLL Divider <0-255>
// <o2.16..26> MUL: PLL Multiplier <0-2047>
// <i> PLL Output is multiplied by MUL+1
// <o2.14..15> OUT: PLL Clock Frequency Range
// <0=> 80..160MHz <1=> Reserved
// <2=> 150..220MHz <3=> Reserved
// <o2.8..13> PLLCOUNT: PLL Lock Counter <0-63>
// <o2.28..29> USBDIV: USB Clock Divider
// <0=> None <1=> 2 <2=> 4 <3=> Reserved
// </h>
// <o3.0..1> CSS: Clock Source Selection
// <0=> Slow Clock
// <1=> Main Clock
// <2=> Reserved
// <3=> PLL Clock
// <o3.2..4> PRES: Prescaler
// <0=> None
// <1=> Clock / 2 <2=> Clock / 4
// <3=> Clock / 8 <4=> Clock / 16
// <5=> Clock / 32 <6=> Clock / 64
// <7=> Reserved
// </e>
*/
.equ PMC_SETUP, 1
.equ PMC_MOR_Val, 0x00000601 /* Enable main oscilator,
48 cycles startup */
.equ PMC_PLLR_Val, 0x00191C05 /* 28 cycles startup,
PLL = 5.2* * main clock */
.equ PMC_MCKR_Val, 0x0000000B /* MCK = PLL/4 */
/* Reset controller */
.equ RSTC_BASE, 0xfffffd00
.equ RSTC_CR, 0x00
.equ RSTC_SR, 0x04
.equ RSTC_MR, 0x08
.equ RSTC_SETUP, 1
.equ RSTC_MR_Val, 0xa5000001 /* Enable user reset */
#if (defined(VECTORS_IN_RAM) && defined(ROM_RUN)) || defined(USE_SAMBA)
/*
Exception Vectors to be placed in RAM - added by mt
-> will be used after remapping in ROM_RUN
-> not needed for RAM_RUN
-> moved to address 0 after remapping
Mapped to Address 0 after remapping in ROM_RUN
Absolute addressing mode must be used.
Dummy Handlers are implemented as infinite loops which can be modified.
VECTORS_IN_RAM defined in makefile/by commandline
*/
.text
.arm
.section .vectram, "ax"
VectorsRAM: LDR PC,Reset_AddrR
LDR PC,Undef_AddrR
LDR PC,SWI_AddrR
LDR PC,PAbt_AddrR
LDR PC,DAbt_AddrR
NOP /* Reserved Vector */
LDR PC,[PC,#-0xF20] /* Vector From AIC_IVR */
LDR PC,[PC,#-0xF20] /* Vector From AIC_FVR */
Reset_AddrR: .word Reset_Handler
Undef_AddrR: .word Undef_HandlerR
SWI_AddrR: .word SWI_HandlerR
PAbt_AddrR: .word PAbt_HandlerR
DAbt_AddrR: .word DAbt_HandlerR
// .word 0xdeadbeef /* Test Reserved Address */
.word 0 /* Reserved Address */
IRQ_AddrR: .word IRQ_HandlerR
FIQ_AddrR: .word FIQ_HandlerR
Undef_HandlerR: B Undef_HandlerR
SWI_HandlerR: B SWI_HandlerR
PAbt_HandlerR: B PAbt_HandlerR
DAbt_HandlerR: B DAbt_HandlerR
IRQ_HandlerR: B IRQ_HandlerR
FIQ_HandlerR: B FIQ_HandlerR
VectorsRAM_end:
#endif /* VECTORS_IN_RAM && ROM_RUN */
#ifndef USE_SAMBA
/*
Exception Vectors
- for ROM_RUN: placed in 0x00000000
- for RAM_RUN: placed at 0x00200000 (on AT91SAM7S64)
- for USE_SAMBA: not used
-> will be used during startup before remapping with target ROM_RUN
-> will be used "always" in code without remapping or with target RAM_RUN
Mapped to Address relative address 0 of .text
Absolute addressing mode must be used.
Dummy Handlers are implemented as infinite loops which can be modified.
*/
.text
.arm
.section .vectrom, "ax"
Vectors: LDR PC,Reset_Addr
LDR PC,Undef_Addr
LDR PC,SWI_Addr
LDR PC,PAbt_Addr
LDR PC,DAbt_Addr
NOP /* Reserved Vector */
// LDR PC,IRQ_Addr
LDR PC,[PC,#-0xF20] /* Vector From AIC_IVR */
// LDR PC,FIQ_Addr
LDR PC,[PC,#-0xF20] /* Vector From AIC_FVR */
Reset_Addr: .word Reset_Handler
Undef_Addr: .word Undef_Handler
SWI_Addr: .word SWI_Handler
PAbt_Addr: .word PAbt_Handler
DAbt_Addr: .word DAbt_Handler
.word 0 /* Reserved Address */
IRQ_Addr: .word IRQ_Handler
FIQ_Addr: .word FIQ_Handler
Undef_Handler: B Undef_Handler
SWI_Handler: B SWI_Handler
PAbt_Handler: B PAbt_Handler
DAbt_Handler: B DAbt_Handler
IRQ_Handler: B IRQ_Handler
FIQ_Handler: B FIQ_Handler
#endif
// Starupt Code must be linked first at Address at which it expects to run.
.text
.arm
.section .init, "ax"
.global _startup
.func _startup
_startup:
// Reset Handler
LDR pc, =Reset_Handler
Reset_Handler:
// Setup EFC
.if EFC_SETUP
LDR R0, =EFC_BASE
LDR R1, =EFC_FMR_Val
STR R1, [R0, #EFC_FMR]
.endif
// Setup WDT
.if WDT_SETUP
LDR R0, =WDT_BASE
LDR R1, =WDT_MR_Val
STR R1, [R0, #WDT_MR]
.endif
// Setup reset controller
.if RSTC_SETUP
LDR R0, =RSTC_BASE
LDR R1, =RSTC_MR_Val
STR R1, [R0, #RSTC_MR]
.endif
// Setup PMC
.if PMC_SETUP
LDR R0, =PMC_BASE
// Setup Main Oscillator
LDR R1, =PMC_MOR_Val
STR R1, [R0, #PMC_MOR]
// Wait until Main Oscillator is stablilized
.if (PMC_MOR_Val & PMC_MOSCEN)
MOSCS_Loop: LDR R2, [R0, #PMC_SR]
ANDS R2, R2, #PMC_MOSCS
BEQ MOSCS_Loop
.endif
// Setup the PLL
.if (PMC_PLLR_Val & PMC_MUL)
LDR R1, =PMC_PLLR_Val
STR R1, [R0, #PMC_PLLR]
// Wait until PLL is stabilized
PLL_Loop: LDR R2, [R0, #PMC_SR]
ANDS R2, R2, #PMC_LOCK
BEQ PLL_Loop
.endif
// Select Clock
LDR R1, =PMC_MCKR_Val
STR R1, [R0, #PMC_MCKR]
.endif
// Setup Stack for each mode
LDR R0, =Top_Stack
// Enter Undefined Instruction Mode and set its Stack Pointer
MSR CPSR_c, #Mode_UND|I_Bit|F_Bit
LDR SP, =UND_Stack_End
// Enter Abort Mode and set its Stack Pointer
MSR CPSR_c, #Mode_ABT|I_Bit|F_Bit
LDR SP, =ABT_Stack_End
// Enter FIQ Mode and set its Stack Pointer
MSR CPSR_c, #Mode_FIQ|I_Bit|F_Bit
LDR SP, =FIQ_Stack_End
// Enter IRQ Mode and set its Stack Pointer
MSR CPSR_c, #Mode_IRQ|I_Bit|F_Bit
LDR SP, =IRQ_Stack_End
// Enter Supervisor Mode and set its Stack Pointer
MSR CPSR_c, #Mode_SVC|I_Bit|F_Bit
LDR SP, =SVC_Stack_End
// Enter User Mode and set its Stack Pointer
#ifndef RUN_AS_SYSTEM
MSR CPSR_c, #Mode_SYS
#else
MSR CPSR_c, #Mode_USR
#endif
LDR SP, =USR_Stack_End
// Setup a default Stack Limit (when compiled with "-mapcs-stack-check")
LDR SL, =USR_Stack_End
#ifdef ROM_RUN
// Relocate .data section (Copy from ROM to RAM)
LDR R1, =_etext
LDR R2, =_data
LDR R3, =_edata
LoopRel: CMP R2, R3
LDRLO R0, [R1], #4
STRLO R0, [R2], #4
BLO LoopRel
#endif
// Clear .bss section (Zero init)
MOV R0, #0
LDR R1, =__bss_start__
LDR R2, =__bss_end__
LoopZI: CMP R1, R2
STRLO R0, [R1], #4
BLO LoopZI
#if defined(VECTORS_IN_RAM) || defined(RAM_RUN)
/*
*** Remap ***
ROM_RUN: exception vectors for RAM have been already copied
to 0x00200000 by the .data copy-loop
RAM_RUN: exception vectors are already placed at 0x0020000 by
linker settings
*/
.equ MC_BASE,0xFFFFFF00 /* MC Base Address */
.equ MC_RCR, 0x00 /* MC_RCR Offset */
LDR R0, =MC_BASE
MOV R1, #1
STR R1, [R0, #MC_RCR] // Remap
#endif /* VECTORS_IN_RAM || RAM_RUN */
#ifdef USE_SAMBA
// Copy interrupt vectors to RAM, that has previously been mapped to 0
MOV R1, #0
LDR R2, = VectorsRAM
LDR R3, = VectorsRAM_end
LoopVectCopy: CMP R2, R3
LDRLO R0, [R2], #4
STRLO R0, [R1], #4
BLO LoopVectCopy
#endif
/*
Call C++ constructors (for objects in "global scope")
added by Martin Thomas based on a Anglia Design
example-application for STR7 ARM
*/
LDR r0, =__ctors_start__
LDR r1, =__ctors_end__
ctor_loop:
CMP r0, r1
BEQ ctor_end
LDR r2, [r0], #4 /* this ctor's address */
STMFD sp!, {r0-r1} /* save loop counters */
MOV lr, pc /* set return address */
// MOV pc, r2
BX r2 /* call ctor */
LDMFD sp!, {r0-r1} /* restore loop counters */
B ctor_loop
ctor_end:
// Enter the C code
mov r0,#0 // no arguments (argc = 0)
mov r1,r0
mov r2,r0
mov fp,r0 // null frame pointer
mov r7,r0 // null frame pointer for thumb
ldr r10,=main
adr lr, __main_exit
bx r10 // enter main()
__main_exit: B __main_exit
.size _startup, . - _startup
.endfunc
.end