Cleanup trailing spaces and convert tabs to spaces

This commit removes trailing spaces and converts
tabs to spaces in all files affected by fix-doxygen PR.
This commit is contained in:
Tommy Sparber 2015-10-30 21:41:59 +11:00
parent 9bb3a3a235
commit 938a425949
29 changed files with 1001 additions and 1033 deletions

View file

@ -1,6 +1,6 @@
/**
/**
* \brief Compiler and Platform specific definitions and typedefs common to
* all platforms.
* all platforms.
*
* platform-common.h provides PLATFORM_HEADER defaults and common definitions.
* This head should never be included directly, it should only be included
@ -20,7 +20,7 @@
* <!--(C) COPYRIGHT 2010 STMicroelectronics. All rights reserved. -->
*/
#ifndef PLATCOMMONOKTOINCLUDE
// This header should only be included by a PLATFORM_HEADER
#error platform-common.h should not be included directly
@ -29,7 +29,7 @@
#ifndef PLATFORMCOMMON_H_
#define PLATFORMCOMMON_H_
////////////////////////////////////////////////////////////////////////////////
// Many of the common definitions must be explicitly enabled by the
// Many of the common definitions must be explicitly enabled by the
// particular PLATFORM_HEADER being used
////////////////////////////////////////////////////////////////////////////////
@ -69,16 +69,16 @@
////////////////////////////////////////////////////////////////////////////////
#ifdef _HAL_USE_COMMON_DIVMOD_
/** \name Divide and Modulus Operations
* Some platforms can perform divide and modulus operations on 32 bit
* Some platforms can perform divide and modulus operations on 32 bit
* quantities more efficiently when the divisor is only a 16 bit quantity.
* C compilers will always promote the divisor to 32 bits before performing the
* operation, so the following utility functions are instead required to take
* operation, so the following utility functions are instead required to take
* advantage of this optimisation.
*/
//@{
/**
* \brief Provide a portable name for the uint32_t by uint16_t division
* library function (which can perform the division with only a single
* library function (which can perform the division with only a single
* assembly instruction on some platforms)
*/
#define halCommonUDiv32By16(x, y) ((uint16_t) (((uint32_t) (x)) / ((uint16_t) (y))))
@ -111,12 +111,12 @@
#ifdef _HAL_USE_COMMON_MEMUTILS_
/** \name C Standard Library Memory Utilities
* These should be used in place of the standard library functions.
*
*
* These functions have the same parameters and expected results as their C
* Standard Library equivalents but may take advantage of certain implementation
* optimizations.
*
* Unless otherwise noted, these functions are utilized by the StStack and are
*
* Unless otherwise noted, these functions are utilized by the StStack and are
* therefore required to be implemented in the HAL. Additionally, unless otherwise
* noted, applications that find these functions useful may utilze them.
*/
@ -212,22 +212,22 @@
#define SETBIT(reg, bit) reg |= BIT(bit)
/**
* \brief Sets the bits in the \c reg register or the byte
* as specified in the bitmask \c bits.
* \brief Sets the bits in the \c reg register or the byte
* as specified in the bitmask \c bits.
* @note This is never a single atomic operation.
*/
#define SETBITS(reg, bits) reg |= (bits)
/**
* \brief Clears a bit in the \c reg register or byte.
* @note Assuming \c reg is an IO register, some platforms (such as the AVR)
* \brief Clears a bit in the \c reg register or byte.
* @note Assuming \c reg is an IO register, some platforms (such as the AVR)
* can implement this in a single atomic operation.
*/
#define CLEARBIT(reg, bit) reg &= ~(BIT(bit))
/**
* \brief Clears the bits in the \c reg register or byte
* as specified in the bitmask \c bits.
* \brief Clears the bits in the \c reg register or byte
* as specified in the bitmask \c bits.
* @note This is never a single atomic operation.
*/
#define CLEARBITS(reg, bits) reg &= ~(bits)
@ -238,7 +238,7 @@
#define READBIT(reg, bit) (reg & (BIT(bit)))
/**
* \brief Returns the value of the bitmask \c bits within
* \brief Returns the value of the bitmask \c bits within
* the register or byte \c reg.
*/
#define READBITS(reg, bits) (reg & (bits))
@ -263,13 +263,13 @@
#define HIGH_BYTE(n) ((uint8_t)(LOW_BYTE((n) >> 8)))
/**
* \brief Returns the value built from the two \c uint8_t
* \brief Returns the value built from the two \c uint8_t
* values \c high and \c low.
*/
#define HIGH_LOW_TO_INT(high, low) ( \
(( (uint16_t) (high) ) << 8) + \
( (uint16_t) ( (low) & 0xFF)) \
)
)
/**
* \brief Returns the low byte of the 32-bit value \c n as an \c uint8_t.
@ -301,21 +301,21 @@
//@{
/**
* \brief Returns the elapsed time between two 8 bit values.
* \brief Returns the elapsed time between two 8 bit values.
* Result may not be valid if the time samples differ by more than 127
*/
#define elapsedTimeInt8u(oldTime, newTime) \
((uint8_t) ((uint8_t)(newTime) - (uint8_t)(oldTime)))
/**
* \brief Returns the elapsed time between two 16 bit values.
* \brief Returns the elapsed time between two 16 bit values.
* Result may not be valid if the time samples differ by more than 32767
*/
#define elapsedTimeInt16u(oldTime, newTime) \
((uint16_t) ((uint16_t)(newTime) - (uint16_t)(oldTime)))
/**
* \brief Returns the elapsed time between two 32 bit values.
* \brief Returns the elapsed time between two 32 bit values.
* Result may not be valid if the time samples differ by more than 2147483647
*/
#define elapsedTimeInt32u(oldTime, newTime) \