Merge pull request #59 from g-oikonomou/8051-regressions

8051-based ports: Regression tests and code cleanup
This commit is contained in:
Adam Dunkels 2012-12-16 21:42:36 -08:00
commit 70e46f3248
85 changed files with 669 additions and 837 deletions

13
.gitignore vendored
View file

@ -41,3 +41,16 @@ tools/cooja/apps/serial_socket/lib/
tools/coffee-manager/coffee.jar
tools/cooja/apps/avrora/lib/cooja_avrora.jar
tools/cooja/apps/collect-view/cooja-collect-view.jar
# sdcc build artifacts
contiki-sensinode.lib
contiki-cc2530dk.lib
*.ihx
*.hex
*.mem
*.lk
*.omf
*.cdb
*.banks
*.sensinode
*.cc2530dk

View file

@ -4,10 +4,16 @@ before_script:
## Install these mainline toolchains for all build types
- "sudo apt-get -qq install gcc-msp430 || true"
- "sudo apt-get -qq install gcc-avr avr-libc || true"
- "sudo apt-get -qq install srecord || true"
## Install toolchain for mc1233x in care-free way
- "[ $BUILD_TYPE = compile ] && curl -s \
https://sourcery.mentor.com/public/gnu_toolchain/arm-none-eabi/arm-2008q3-66-arm-none-eabi-i686-pc-linux-gnu.tar.bz2 \
| tar xjf - -C /tmp/ && sudo cp -f -r /tmp/arm-2008q3/* /usr/ && rm -rf /tmp/arm-2008q3 && arm-none-eabi-gcc --version || true"
## Install SDCC from a purpose-built bundle
- "[ $BUILD_TYPE = compile ] && curl -s \
https://raw.github.com/wiki/g-oikonomou/contiki-sensinode/files/sdcc-r7100.tar.gz \
| tar xzf - -C /tmp/ && sudo cp -f -r /tmp/sdcc-r7100/* /usr/local/ && rm -rf /tmp/sdcc-r7100 && sdcc --version || true"
## Compile cooja.jar only when it's going to be needed
- "[ $MAKE_TARGETS = cooja ] && java -version && ant -q -f tools/cooja/build.xml jar || true"

View file

@ -44,7 +44,7 @@
/*---------------------------------------------------------------------------*/
void
bus_init (void)
bus_init(void)
{
CLKCON = (0x00 | OSC32K); /* 32k internal */
while(CLKCON != (0x00 | OSC32K));

View file

@ -263,7 +263,7 @@ cc2430_rf_set_addr(unsigned pan, unsigned addr, const uint8_t *ieee_addr)
if(ieee_addr != NULL) {
ptr = &IEEE_ADDR7;
/* LSB first, MSB last for 802.15.4 addresses in CC2420 */
for (f = 0; f < 8; f++) {
for(f = 0; f < 8; f++) {
*ptr-- = ieee_addr[f];
}
}
@ -396,10 +396,10 @@ prepare(const void *payload, unsigned short payload_len)
PRINTF("cc2430_rf: data = ");
/* Send the phy length byte first */
RFD = payload_len + CHECKSUM_LEN; /* Payload plus FCS */
PRINTF("(%d)", payload_len+CHECKSUM_LEN);
PRINTF("(%d)", payload_len + CHECKSUM_LEN);
for(i = 0; i < payload_len; i++) {
RFD = ((unsigned char*) (payload))[i];
PRINTF("%02X", ((unsigned char*)(payload))[i]);
RFD = ((unsigned char *)(payload))[i];
PRINTF("%02X", ((unsigned char *)(payload))[i]);
}
PRINTF("\n");
@ -460,7 +460,7 @@ transmit(unsigned short transmit_len)
ENERGEST_OFF(ENERGEST_TYPE_TRANSMIT);
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
if(rf_flags & WAS_OFF){
if(rf_flags & WAS_OFF) {
off();
}
@ -510,7 +510,7 @@ read(void *buf, unsigned short bufsize)
}
if(len <= CC2430_MIN_PACKET_LEN) {
PRINTF("error: too short\n");
PRINTF("error: too short\n");
RIMESTATS_ADD(tooshort);
flush_rx();
@ -518,7 +518,7 @@ read(void *buf, unsigned short bufsize)
}
if(len - CHECKSUM_LEN > bufsize) {
PRINTF("error: too long\n");
PRINTF("error: too long\n");
RIMESTATS_ADD(toolong);
flush_rx();
@ -538,11 +538,11 @@ read(void *buf, unsigned short bufsize)
PRINTF("(%d)", len);
len -= CHECKSUM_LEN;
for(i = 0; i < len; ++i) {
((unsigned char*)(buf))[i] = RFD;
((unsigned char *)(buf))[i] = RFD;
#if CC2430_RF_CONF_HEXDUMP
uart1_writeb(((unsigned char*)(buf))[i]);
uart1_writeb(((unsigned char *)(buf))[i]);
#endif
PRINTF("%02X", ((unsigned char*)(buf))[i]);
PRINTF("%02X", ((unsigned char *)(buf))[i]);
}
PRINTF("\n");
@ -570,17 +570,17 @@ read(void *buf, unsigned short bufsize)
RIMESTATS_ADD(badcrc);
flush_rx();
return 0;
}
}
/* If FIFOP==1 and FIFO==0 then we had a FIFO overflow at some point. */
if((RFSTATUS & (FIFO | FIFOP)) == FIFOP) {
/*
* If we reach here means that there might be more intact packets in the
* FIFO despite the overflow. This can happen with bursts of small packets.
*
*
* Only flush if the FIFO is actually empty. If not, then next pass we will
* pick up one more packet or flush due to an error.
*/
*/
if(!RXFIFOCNT) {
flush_rx();
}
@ -646,14 +646,14 @@ on(void)
RSSIH = 0xd2; /* -84dbm = 0xd2 default, 0xe0 -70 dbm */
RFPWR &= ~RREG_RADIO_PD; /* make sure it's powered */
while ((RFIF & IRQ_RREG_ON) == 0); /* wait for power up */
while((RFIF & IRQ_RREG_ON) == 0); /* wait for power up */
/* Make sure the RREG On Interrupt Flag is 0 next time we get called */
RFIF &= ~IRQ_RREG_ON;
cc2430_rf_command(ISRXON);
cc2430_rf_command(ISFLUSHRX);
while (RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + ONOFF_TIME));
while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + ONOFF_TIME));
}
PRINTF("cc2430_rf_rx_enable done\n");
@ -686,18 +686,17 @@ off(void)
return 1;
}
/*---------------------------------------------------------------------------*/
const struct radio_driver cc2430_rf_driver =
{
init,
prepare,
transmit,
send,
read,
channel_clear,
receiving_packet,
pending_packet,
on,
off,
const struct radio_driver cc2430_rf_driver = {
init,
prepare,
transmit,
send,
read,
channel_clear,
receiving_packet,
pending_packet,
on,
off,
};
/*---------------------------------------------------------------------------*/
#if !NETSTACK_CONF_SHORTCUTS

View file

@ -16,15 +16,14 @@
#endif
/* Constants */
typedef enum rf_address_mode_t
{
RF_DECODER_NONE = 0,
RF_DECODER_COORDINATOR,
RF_SOFTACK_MONITOR,
RF_MONITOR,
RF_SOFTACK_CLIENT,
RF_DECODER_ON
}rf_address_mode_t;
typedef enum rf_address_mode_t {
RF_DECODER_NONE = 0,
RF_DECODER_COORDINATOR,
RF_SOFTACK_MONITOR,
RF_MONITOR,
RF_SOFTACK_CLIENT,
RF_DECODER_ON
} rf_address_mode_t;
/*CSP command set*/
#define SSTOP 0xDF
@ -79,10 +78,10 @@ uint8_t cc2430_rf_power_set(uint8_t new_power);
void cc2430_rf_set_addr(unsigned pan, unsigned addr, const uint8_t *ieee_addr);
#if !NETSTACK_CONF_SHORTCUTS
extern void cc2430_rf_ISR( void ) __interrupt (RF_VECTOR);
extern void cc2430_rf_ISR(void) __interrupt(RF_VECTOR);
#endif
#if CC2430_RFERR_INTERRUPT
extern void cc2430_rf_error_ISR( void ) __interrupt (RFERR_VECTOR);
extern void cc2430_rf_error_ISR(void) __interrupt(RFERR_VECTOR);
#endif
#ifdef HAVE_RF_DMA

View file

@ -61,7 +61,7 @@ PROCESS_NAME(cc2430_rf_process);
#pragma exclude bits
#endif
void
cc2430_rf_ISR( void ) __interrupt (RF_VECTOR)
cc2430_rf_ISR(void) __interrupt(RF_VECTOR)
{
EA = 0;
ENERGEST_ON(ENERGEST_TYPE_IRQ);
@ -70,9 +70,9 @@ cc2430_rf_ISR( void ) __interrupt (RF_VECTOR)
* Just double check the flag.
*/
if(RFIF & IRQ_FIFOP) {
RF_RX_LED_ON();
/* Poll the RF process which calls cc2430_rf_read() */
process_poll(&cc2430_rf_process);
RF_RX_LED_ON();
/* Poll the RF process which calls cc2430_rf_read() */
process_poll(&cc2430_rf_process);
}
S1CON &= ~(RFIF_0 | RFIF_1);
@ -92,7 +92,7 @@ cc2430_rf_ISR( void ) __interrupt (RF_VECTOR)
#pragma exclude bits
#endif
void
cc2430_rf_error_ISR( void ) __interrupt (RFERR_VECTOR)
cc2430_rf_error_ISR(void) __interrupt(RFERR_VECTOR)
{
EA = 0;
TCON_RFERRIF = 0;

View file

@ -98,14 +98,14 @@ clock_init(void)
CLKCON = OSC32K | TICKSPD2 | TICKSPD1; /* tickspeed 500 kHz for timers[1-4] */
/* Initialize tick value */
timer_value = ST0; /* ST low bits [7:0] */
timer_value += ((unsigned long int) ST1) << 8; /* middle bits [15:8] */
timer_value += ((unsigned long int) ST2) << 16; /* high bits [23:16] */
timer_value += TICK_VAL; /* Init value 256 */
ST2 = (unsigned char) (timer_value >> 16);
ST1 = (unsigned char) (timer_value >> 8);
ST0 = (unsigned char) timer_value;
timer_value = ST0; /* ST low bits [7:0] */
timer_value += ((unsigned long int)ST1) << 8; /* middle bits [15:8] */
timer_value += ((unsigned long int)ST2) << 16; /* high bits [23:16] */
timer_value += TICK_VAL; /* Init value 256 */
ST2 = (unsigned char)(timer_value >> 16);
ST1 = (unsigned char)(timer_value >> 8);
ST0 = (unsigned char)timer_value;
IEN0_STIE = 1; /* IEN0.STIE acknowledge Sleep Timer Interrupt */
}
/*---------------------------------------------------------------------------*/
@ -131,15 +131,15 @@ clock_ISR(void) __interrupt(ST_VECTOR)
* Next interrupt occurs after the current time + TICK_VAL
*/
timer_value = ST0;
timer_value += ((unsigned long int) ST1) << 8;
timer_value += ((unsigned long int) ST2) << 16;
timer_value += ((unsigned long int)ST1) << 8;
timer_value += ((unsigned long int)ST2) << 16;
timer_value += TICK_VAL;
ST2 = (unsigned char) (timer_value >> 16);
ST1 = (unsigned char) (timer_value >> 8);
ST0 = (unsigned char) timer_value;
ST2 = (unsigned char)(timer_value >> 16);
ST1 = (unsigned char)(timer_value >> 8);
ST0 = (unsigned char)timer_value;
++count;
/* Make sure the CLOCK_CONF_SECOND is a power of two, to ensure
that the modulo operation below becomes a logical and and not
an expensive divide. Algorithm from Wikipedia:
@ -160,7 +160,7 @@ clock_ISR(void) __interrupt(ST_VECTOR)
etimer_request_poll();
}
#endif
IRCON_STIF = 0;
ENERGEST_OFF(ENERGEST_TYPE_IRQ);
ENABLE_INTERRUPTS();

View file

@ -16,7 +16,7 @@
#if DMA_ON
struct dma_config dma_conf[DMA_CHANNEL_COUNT]; /* DMA Descriptors */
struct process * dma_callback[DMA_CHANNEL_COUNT];
struct process *dma_callback[DMA_CHANNEL_COUNT];
/*---------------------------------------------------------------------------*/
void
dma_init(void)
@ -30,7 +30,7 @@ dma_init(void)
}
/* The address of the descriptor for Channel 0 is configured separately */
tmp_ptr = (uint16_t) &(dma_conf[0]);
tmp_ptr = (uint16_t)&(dma_conf[0]);
DMA0CFGH = tmp_ptr >> 8;
DMA0CFGL = tmp_ptr;
@ -40,7 +40,7 @@ dma_init(void)
* derived by the SoC
*/
#if (DMA_CHANNEL_COUNT > 1)
tmp_ptr = (uint16_t) &(dma_conf[1]);
tmp_ptr = (uint16_t)&(dma_conf[1]);
DMA1CFGH = tmp_ptr >> 8;
DMA1CFGL = tmp_ptr;
#endif
@ -53,7 +53,7 @@ dma_init(void)
* completes, the ISR will poll this process.
*/
void
dma_associate_process(struct process * p, uint8_t c)
dma_associate_process(struct process *p, uint8_t c)
{
if((!c) || (c >= DMA_CHANNEL_COUNT)) {
return;

View file

@ -138,11 +138,11 @@ extern dma_config_t dma_conf[DMA_CHANNEL_COUNT];
/* Functions Declarations */
void dma_init(void);
void dma_associate_process (struct process * p, uint8_t c);
void dma_associate_process(struct process *p, uint8_t c);
/* Only link the ISR when DMA_ON is .... on */
#if DMA_ON
void dma_ISR( void ) __interrupt (DMA_VECTOR);
void dma_ISR(void) __interrupt(DMA_VECTOR);
#endif
#endif /*__DMA_H*/

View file

@ -16,7 +16,7 @@
#include "cc2430_sfr.h"
#if DMA_ON
extern struct process * dma_callback[DMA_CHANNEL_COUNT];
extern struct process *dma_callback[DMA_CHANNEL_COUNT];
#endif
/*---------------------------------------------------------------------------*/
@ -37,17 +37,17 @@ extern void spi_rx_dma_callback(void);
#pragma exclude bits
#endif
void
dma_ISR(void) __interrupt (DMA_VECTOR)
dma_ISR(void) __interrupt(DMA_VECTOR)
{
#if DMA_ON
uint8_t i;
#endif
EA=0;
EA = 0;
IRCON_DMAIF = 0;
#ifdef HAVE_RF_DMA
if((DMAIRQ & 1) != 0) {
DMAIRQ &= ~1;
DMAARM=0x81;
DMAARM = 0x81;
rf_dma_callback_isr();
}
#endif

View file

@ -20,12 +20,12 @@
void uart0_init();
void uart0_writeb(uint8_t byte);
void uart0_set_input(int (*input)(unsigned char c));
void uart0_set_input(int (* input)(unsigned char c));
void uart0_rx_ISR( void ) __interrupt (URX0_VECTOR);
void uart0_tx_ISR( void ) __interrupt (UTX0_VECTOR);
void uart0_rx_ISR(void) __interrupt(URX0_VECTOR);
void uart0_tx_ISR(void) __interrupt(UTX0_VECTOR);
/* Macro to turn on / off UART RX Interrupt */
#define UART0_RX_INT(v) IEN0_URX0IE = v
#define UART0_RX_INT(v) do { IEN0_URX0IE = v; } while(0)
#endif
#endif /* UART_0_H */

View file

@ -22,10 +22,10 @@ void uart1_writeb(uint8_t byte);
void uart1_set_input(int (*input)(unsigned char c));
#if UART_ONE_CONF_WITH_INPUT
void uart1_rx_ISR( void ) __interrupt (URX1_VECTOR);
void uart1_tx_ISR( void ) __interrupt (UTX1_VECTOR);
void uart1_rx_ISR(void) __interrupt(URX1_VECTOR);
void uart1_tx_ISR(void) __interrupt(UTX1_VECTOR);
/* Macro to turn on / off UART RX Interrupt */
#define UART1_RX_INT(v) IEN0_URX1IE = v
#define UART1_RX_INT(v) do { IEN0_URX1IE = v; } while(0)
#else
#define UART1_RX_INT(v)
#endif /* UART_ONE_CONF_WITH_INPUT */

View file

@ -21,16 +21,16 @@
#include "sys/energest.h"
#if UART_ZERO_ENABLE
static int (*uart0_input_handler)(unsigned char c);
static int (* uart0_input_handler)(unsigned char c);
#endif
#if UART_ONE_ENABLE
static int (*uart1_input_handler)(unsigned char c);
static int (* uart1_input_handler)(unsigned char c);
#endif
#if UART_ZERO_ENABLE
/*---------------------------------------------------------------------------*/
void
uart0_set_input(int (*input)(unsigned char c))
uart0_set_input(int (* input)(unsigned char c))
{
uart0_input_handler = input;
}
@ -41,7 +41,7 @@ uart0_set_input(int (*input)(unsigned char c))
#pragma exclude bits
#endif
void
uart0_rx_ISR(void) __interrupt (URX0_VECTOR)
uart0_rx_ISR(void) __interrupt(URX0_VECTOR)
{
ENERGEST_ON(ENERGEST_TYPE_IRQ);
TCON_URX0IF = 0;
@ -52,7 +52,7 @@ uart0_rx_ISR(void) __interrupt (URX0_VECTOR)
}
/*---------------------------------------------------------------------------*/
void
uart0_tx_ISR( void ) __interrupt (UTX0_VECTOR)
uart0_tx_ISR(void) __interrupt(UTX0_VECTOR)
{
}
#pragma restore
@ -60,7 +60,7 @@ uart0_tx_ISR( void ) __interrupt (UTX0_VECTOR)
#if UART_ONE_ENABLE
/*---------------------------------------------------------------------------*/
void
uart1_set_input(int (*input)(unsigned char c))
uart1_set_input(int (* input)(unsigned char c))
{
uart1_input_handler = input;
}
@ -71,7 +71,7 @@ uart1_set_input(int (*input)(unsigned char c))
#pragma exclude bits
#endif
void
uart1_rx_ISR(void) __interrupt (URX1_VECTOR)
uart1_rx_ISR(void) __interrupt(URX1_VECTOR)
{
ENERGEST_ON(ENERGEST_TYPE_IRQ);
TCON_URX1IF = 0;
@ -82,7 +82,7 @@ uart1_rx_ISR(void) __interrupt (URX1_VECTOR)
}
/*---------------------------------------------------------------------------*/
void
uart1_tx_ISR( void ) __interrupt (UTX1_VECTOR)
uart1_tx_ISR(void) __interrupt(UTX1_VECTOR)
{
}
#pragma restore

View file

@ -52,7 +52,7 @@
#pragma exclude bits
#endif
void
cc4230_watchdog_ISR(void) __interrupt (WDT_VECTOR)
cc4230_watchdog_ISR(void) __interrupt(WDT_VECTOR)
{
EA = 0;
ENERGEST_ON(ENERGEST_TYPE_IRQ);

View file

@ -29,16 +29,16 @@
*
*/
/*
* \file
* Stub header file for cc2430 multi-threading. It doesn't do anything, it
* just exists so that mt.c can compile cleanly.
*
* This is based on the original mtarch.h for z80 by Takahide Matsutsuka
*
* \author
* George Oikonomou - <oikonomou@users.sourceforge.net>
*/
/*
* \file
* Stub header file for cc2430 multi-threading. It doesn't do anything, it
* just exists so that mt.c can compile cleanly.
*
* This is based on the original mtarch.h for z80 by Takahide Matsutsuka
*
* \author
* George Oikonomou - <oikonomou@users.sourceforge.net>
*/
#ifndef __MTARCH_H__
#define __MTARCH_H__
@ -47,4 +47,3 @@ struct mtarch_thread {
};
#endif /* __MTARCH_H__ */

View file

@ -95,8 +95,8 @@ rtimer_arch_schedule(rtimer_clock_t t)
PRINTF("rtimer_arch_schedule(%u)\n", t);
/* set the compare mode values so we can get an interrupt after t */
T1CC1L = (unsigned char) t;
T1CC1H = (unsigned char) (t >> 8);
T1CC1L = (unsigned char)t;
T1CC1H = (unsigned char)(t >> 8);
PRINTF("T1CC1=%u, t=%u\n", (T1CC1L + (T1CC1H << 8)), t);
/* Turn on compare mode interrupt */
@ -109,7 +109,7 @@ rtimer_arch_schedule(rtimer_clock_t t)
#pragma exclude bits
#endif
void
cc2430_timer_1_ISR(void) __interrupt (T1_VECTOR)
cc2430_timer_1_ISR(void) __interrupt(T1_VECTOR)
{
IEN1_T1IE = 0; /* Ignore Timer 1 Interrupts */
ENERGEST_ON(ENERGEST_TYPE_IRQ);

View file

@ -57,6 +57,6 @@
#define rtimer_arch_now() ((rtimer_clock_t)(T1CNTL + (T1CNTH << 8)))
void cc2430_timer_1_ISR(void) __interrupt (T1_VECTOR);
void cc2430_timer_1_ISR(void) __interrupt(T1_VECTOR);
#endif /* __RTIMER_ARCH_H__ */

View file

@ -60,7 +60,7 @@ poison_loop:
uint8_t
stack_get_max(void)
{
__data uint8_t * sp = (__data uint8_t *) 0xff;
__data uint8_t *sp = (__data uint8_t *)0xff;
uint8_t free = 0;
while(*sp-- == STACK_POISON) {

View file

@ -67,9 +67,9 @@
#define RF_TX_LED_OFF() leds_off(LEDS_GREEN);
#else
#define RF_RX_LED_ON()
#define RF_RX_LED_OFF()
#define RF_RX_LED_OFF()
#define RF_TX_LED_ON()
#define RF_TX_LED_OFF()
#define RF_TX_LED_OFF()
#endif
/*---------------------------------------------------------------------------*/
#define DEBUG 0
@ -240,8 +240,8 @@ prepare(const void *payload, unsigned short payload_len)
/* Send the phy length byte first */
RFD = payload_len + CHECKSUM_LEN; /* Payload plus FCS */
for(i = 0; i < payload_len; i++) {
RFD = ((unsigned char*) (payload))[i];
PUTHEX(((unsigned char*)(payload))[i]);
RFD = ((unsigned char *)(payload))[i];
PUTHEX(((unsigned char *)(payload))[i]);
}
PUTSTRING("\n");
@ -264,7 +264,7 @@ transmit(unsigned short transmit_len)
t0 = RTIMER_NOW();
on();
rf_flags |= WAS_OFF;
while (RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + ONOFF_TIME));
while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + ONOFF_TIME));
}
if(channel_clear() == CC2530_RF_CCA_BUSY) {
@ -305,7 +305,7 @@ transmit(unsigned short transmit_len)
ENERGEST_OFF(ENERGEST_TYPE_TRANSMIT);
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
if(rf_flags & WAS_OFF){
if(rf_flags & WAS_OFF) {
off();
}
@ -379,11 +379,11 @@ read(void *buf, unsigned short bufsize)
PUTSTRING(" bytes) = ");
len -= CHECKSUM_LEN;
for(i = 0; i < len; ++i) {
((unsigned char*)(buf))[i] = RFD;
((unsigned char *)(buf))[i] = RFD;
#if CC2530_RF_CONF_HEXDUMP
io_arch_writeb(((unsigned char*)(buf))[i]);
io_arch_writeb(((unsigned char *)(buf))[i]);
#endif
PUTHEX(((unsigned char*)(buf))[i]);
PUTHEX(((unsigned char *)(buf))[i]);
}
PUTSTRING("\n");
@ -483,17 +483,16 @@ off(void)
return 1;
}
/*---------------------------------------------------------------------------*/
const struct radio_driver cc2530_rf_driver =
{
init,
prepare,
transmit,
send,
read,
channel_clear,
receiving_packet,
pending_packet,
on,
off,
const struct radio_driver cc2530_rf_driver = {
init,
prepare,
transmit,
send,
read,
channel_clear,
receiving_packet,
pending_packet,
on,
off,
};
/*---------------------------------------------------------------------------*/

View file

@ -121,13 +121,13 @@ clock_init(void)
/* Initialize tick value */
timer_value = ST0;
timer_value += ((unsigned long int) ST1) << 8;
timer_value += ((unsigned long int) ST2) << 16;
timer_value += ((unsigned long int)ST1) << 8;
timer_value += ((unsigned long int)ST2) << 16;
timer_value += TICK_VAL;
ST2 = (unsigned char) (timer_value >> 16);
ST1 = (unsigned char) (timer_value >> 8);
ST0 = (unsigned char) timer_value;
ST2 = (unsigned char)(timer_value >> 16);
ST1 = (unsigned char)(timer_value >> 8);
ST0 = (unsigned char)timer_value;
STIE = 1; /* IEN0.STIE interrupt enable */
}
/*---------------------------------------------------------------------------*/
@ -147,15 +147,15 @@ clock_isr(void) __interrupt(ST_VECTOR)
* Next interrupt occurs after the current time + TICK_VAL
*/
timer_value = ST0;
timer_value += ((unsigned long int) ST1) << 8;
timer_value += ((unsigned long int) ST2) << 16;
timer_value += ((unsigned long int)ST1) << 8;
timer_value += ((unsigned long int)ST2) << 16;
timer_value += TICK_VAL;
ST2 = (unsigned char) (timer_value >> 16);
ST1 = (unsigned char) (timer_value >> 8);
ST0 = (unsigned char) timer_value;
ST2 = (unsigned char)(timer_value >> 16);
ST1 = (unsigned char)(timer_value >> 8);
ST0 = (unsigned char)timer_value;
++count;
/* Make sure the CLOCK_CONF_SECOND is a power of two, to ensure
that the modulo operation below becomes a logical and and not
an expensive divide. Algorithm from Wikipedia:
@ -167,7 +167,7 @@ clock_isr(void) __interrupt(ST_VECTOR)
if(count % CLOCK_CONF_SECOND == 0) {
++seconds;
}
#if CLOCK_CONF_STACK_FRIENDLY
sleep_flag = 1;
#else
@ -176,7 +176,7 @@ clock_isr(void) __interrupt(ST_VECTOR)
etimer_request_poll();
}
#endif
STIF = 0; /* IRCON.STIF */
ENERGEST_OFF(ENERGEST_TYPE_IRQ);
ENABLE_INTERRUPTS();

View file

@ -17,7 +17,7 @@
#if DMA_ON
struct dma_config dma_conf[DMA_CHANNEL_COUNT]; /* DMA Descriptors */
struct process * dma_callback[DMA_CHANNEL_COUNT];
struct process *dma_callback[DMA_CHANNEL_COUNT];
/*---------------------------------------------------------------------------*/
void
dma_init(void)
@ -31,7 +31,7 @@ dma_init(void)
}
/* The address of the descriptor for Channel 0 is configured separately */
tmp_ptr = (uint16_t) &(dma_conf[0]);
tmp_ptr = (uint16_t)&(dma_conf[0]);
DMA0CFGH = tmp_ptr >> 8;
DMA0CFGL = tmp_ptr;
@ -41,7 +41,7 @@ dma_init(void)
* derived by the SoC
*/
#if (DMA_CHANNEL_COUNT > 1)
tmp_ptr = (uint16_t) &(dma_conf[1]);
tmp_ptr = (uint16_t)&(dma_conf[1]);
DMA1CFGH = tmp_ptr >> 8;
DMA1CFGL = tmp_ptr;
#endif
@ -54,7 +54,7 @@ dma_init(void)
* completes, the ISR will poll this process.
*/
void
dma_associate_process(struct process * p, uint8_t c)
dma_associate_process(struct process *p, uint8_t c)
{
if((!c) || (c >= DMA_CHANNEL_COUNT)) {
return;
@ -80,15 +80,15 @@ dma_reset(uint8_t c)
return;
}
DMA_ABORT(c);
dma_conf[c].src_h = (uint16_t) &dummy >> 8;
dma_conf[c].src_l = (uint16_t) &dummy;
dma_conf[c].dst_h = (uint16_t) &dummy >> 8;
dma_conf[c].dst_l = (uint16_t) &dummy;
dma_conf[c].src_h = (uint16_t)&dummy >> 8;
dma_conf[c].src_l = (uint16_t)&dummy;
dma_conf[c].dst_h = (uint16_t)&dummy >> 8;
dma_conf[c].dst_l = (uint16_t)&dummy;
dma_conf[c].len_h = 0;
dma_conf[c].len_l = 1;
dma_conf[c].wtt = DMA_BLOCK;
dma_conf[c].inc_prio = DMA_PRIO_GUARANTEED;
DMA_TRIGGER(c); // The operation order is important
DMA_TRIGGER(c); /** The operation order is important */
DMA_ARM(c);
while(DMAARM & (1 << c));
}

View file

@ -139,12 +139,12 @@ extern dma_config_t dma_conf[DMA_CHANNEL_COUNT];
/* Functions Declarations */
void dma_init(void);
void dma_associate_process (struct process * p, uint8_t c);
void dma_associate_process(struct process *p, uint8_t c);
void dma_reset(uint8_t c);
/* Only link the ISR when DMA_ON is .... on */
#if DMA_ON
void dma_isr( void ) __interrupt (DMA_VECTOR);
void dma_isr(void) __interrupt(DMA_VECTOR);
#endif
#endif /*__DMA_H*/

View file

@ -16,7 +16,7 @@
#include "cc253x.h"
#if DMA_ON
extern struct process * dma_callback[DMA_CHANNEL_COUNT];
extern struct process *dma_callback[DMA_CHANNEL_COUNT];
#endif
/*---------------------------------------------------------------------------*/
@ -38,17 +38,17 @@ extern void spi_rx_dma_callback(void);
#pragma exclude bits
#endif
void
dma_isr(void) __interrupt (DMA_VECTOR)
dma_isr(void) __interrupt(DMA_VECTOR)
{
#if DMA_ON
uint8_t i;
#endif
EA=0;
EA = 0;
DMAIF = 0;
#ifdef HAVE_RF_DMA
if((DMAIRQ & 1) != 0) {
DMAIRQ = ~1;
DMAARM=0x81;
DMAARM = 0x81;
rf_dma_callback_isr();
}
#endif

View file

@ -38,7 +38,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
struct cc253x_p2_handler {
struct cc253x_p2_handler *next;
uint8_t (*cb) (void);
uint8_t (* cb)(void);
};
void cc253x_p2_register_handler(struct cc253x_p2_handler *h);

View file

@ -18,16 +18,16 @@
#include "dev/leds.h"
#if UART0_ENABLE
static int (*uart0_input_handler)(unsigned char c);
static int (* uart0_input_handler)(unsigned char c);
#endif
#if UART1_ENABLE
static int (*uart1_input_handler)(unsigned char c);
static int (* uart1_input_handler)(unsigned char c);
#endif
#if UART0_ENABLE
/*---------------------------------------------------------------------------*/
void
uart0_set_input(int (*input)(unsigned char c))
uart0_set_input(int (* input)(unsigned char c))
{
uart0_input_handler = input;
}
@ -39,7 +39,7 @@ uart0_set_input(int (*input)(unsigned char c))
#pragma exclude bits
#endif
void
uart0_rx_isr(void) __interrupt (URX0_VECTOR)
uart0_rx_isr(void) __interrupt(URX0_VECTOR)
{
ENERGEST_ON(ENERGEST_TYPE_IRQ);
leds_toggle(LEDS_YELLOW);
@ -55,7 +55,7 @@ uart0_rx_isr(void) __interrupt (URX0_VECTOR)
#if UART1_ENABLE
/*---------------------------------------------------------------------------*/
void
uart1_set_input(int (*input)(unsigned char c))
uart1_set_input(int (* input)(unsigned char c))
{
uart1_input_handler = input;
}
@ -67,7 +67,7 @@ uart1_set_input(int (*input)(unsigned char c))
#pragma exclude bits
#endif
void
uart1_rx_isr(void) __interrupt (URX1_VECTOR)
uart1_rx_isr(void) __interrupt(URX1_VECTOR)
{
ENERGEST_ON(ENERGEST_TYPE_IRQ);
URX1IF = 0;

View file

@ -20,10 +20,10 @@
void uart0_init();
void uart0_writeb(uint8_t byte);
void uart0_set_input(int (*input)(unsigned char c));
void uart0_set_input(int (* input)(unsigned char c));
#if UART0_CONF_WITH_INPUT
void uart0_rx_isr( void ) __interrupt (URX0_VECTOR);
void uart0_rx_isr(void) __interrupt(URX0_VECTOR);
/* Macro to turn on / off UART RX Interrupt */
#define UART0_RX_INT(v) do { URX0IE = v; } while(0)
#define UART0_RX_EN() do { U0CSR |= UCSR_RE; } while(0)

View file

@ -20,9 +20,9 @@
void uart1_init();
void uart1_writeb(uint8_t byte);
void uart1_set_input(int (*input)(unsigned char c));
void uart1_set_input(int (* input)(unsigned char c));
#if UART1_CONF_WITH_INPUT
void uart1_rx_isr( void ) __interrupt (URX1_VECTOR);
void uart1_rx_isr(void) __interrupt(URX1_VECTOR);
/* Macro to turn on / off UART RX Interrupt */
#define UART1_RX_INT(v) do { URX1IE = v; } while(0)
#else

View file

@ -29,16 +29,16 @@
*
*/
/*
* \file
* Stub header file for multi-threading. It doesn't do anything, it
* just exists so that mt.c can compile cleanly.
*
* This is based on the original mtarch.h for z80 by Takahide Matsutsuka
*
* \author
* George Oikonomou - <oikonomou@users.sourceforge.net>
*/
/*
* \file
* Stub header file for multi-threading. It doesn't do anything, it
* just exists so that mt.c can compile cleanly.
*
* This is based on the original mtarch.h for z80 by Takahide Matsutsuka
*
* \author
* George Oikonomou - <oikonomou@users.sourceforge.net>
*/
#ifndef __MTARCH_H__
#define __MTARCH_H__
@ -47,4 +47,3 @@ struct mtarch_thread {
};
#endif /* __MTARCH_H__ */

View file

@ -87,8 +87,8 @@ rtimer_arch_schedule(rtimer_clock_t t)
/* Switch to capture mode before writing T1CC1x and
* set the compare mode values so we can get an interrupt after t */
RT_MODE_CAPTURE();
T1CC1L = (unsigned char) t;
T1CC1H = (unsigned char) (t >> 8);
T1CC1L = (unsigned char)t;
T1CC1H = (unsigned char)(t >> 8);
RT_MODE_COMPARE();
/* Turn on compare mode interrupt */

View file

@ -60,7 +60,7 @@ poison_loop:
uint8_t
stack_get_max(void)
{
__data uint8_t * sp = (__data uint8_t *) 0xff;
__data uint8_t *sp = (__data uint8_t *)0xff;
uint8_t free = 0;
while(*sp-- == STACK_POISON) {

View file

@ -33,7 +33,7 @@ PROCESS_THREAD(hello_world_process, ev, data)
if(ev == PROCESS_EVENT_TIMER) {
printf("Sensor says #%u\n", count);
count ++;
count++;
etimer_reset(&et_hello);
}

View file

@ -75,7 +75,7 @@ print_local_addresses(void) CC_NON_BANKED
PUTSTRING(" ");
PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);
PUTCHAR('\n');
if (state == ADDR_TENTATIVE) {
if(state == ADDR_TENTATIVE) {
uip_ds6_if.addr_list[i].state = ADDR_PREFERRED;
}
}

View file

@ -57,7 +57,7 @@ static void
slip_input_callback(void)
{
PRINTF("SIN: %u\n", uip_len);
if((char) uip_buf[0] == '!') {
if((char)uip_buf[0] == '!') {
PRINTF("Got configuration message of type %c\n", uip_buf[1]);
uip_len = 0;
if((char)uip_buf[1] == 'P') {

View file

@ -91,7 +91,7 @@ PROCESS_THREAD(buttons_test_process, ev, data)
PROCESS_BEGIN();
while (1) {
while(1) {
PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event);
@ -113,7 +113,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
/* Sensor Values */
static int rv;
static struct sensors_sensor * sensor;
static struct sensors_sensor *sensor;
static float sane = 0;
static int dec;
static float frac;
@ -127,7 +127,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
/* Set an etimer. We take sensor readings when it expires and reset it. */
etimer_set(&et, CLOCK_SECOND * 2);
while (1) {
while(1) {
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
@ -136,7 +136,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
* Return value -1 means sensor not available or turned off in conf
*/
sensor = sensors_find(ADC_SENSOR);
if (sensor) {
if(sensor) {
PRINTF("------------------\n");
leds_on(LEDS_RED);
/*
@ -189,5 +189,5 @@ PROCESS_THREAD(sensors_test_process, ev, data)
etimer_reset(&et);
}
PROCESS_END();
}
}
/*---------------------------------------------------------------------------*/

View file

@ -47,4 +47,3 @@ netstack_init(void)
NETSTACK_RADIO.init();
}
/*---------------------------------------------------------------------------*/

View file

@ -88,13 +88,13 @@ init(void)
}
/*---------------------------------------------------------------------------*/
const struct rdc_driver stub_rdc_driver = {
"stub-rdc",
init,
send,
send_list,
input,
on,
off,
cca,
"stub-rdc",
init,
send,
send_list,
input,
on,
off,
cca,
};
/*---------------------------------------------------------------------------*/

View file

@ -48,7 +48,8 @@ AUTOSTART_PROCESSES(&clock_test_process);
/*---------------------------------------------------------------------------*/
#if TEST_RTIMER
void
rt_callback(struct rtimer *t, void *ptr) {
rt_callback(struct rtimer *t, void *ptr)
{
rt_now = RTIMER_NOW();
ct = clock_time();
printf("Task called at %u (clock = %u)\n", rt_now, ct);
@ -82,13 +83,13 @@ PROCESS_THREAD(clock_test_process, ev, data)
printf("Rtimer Test, 1 sec (%u rtimer ticks):\n", RTIMER_SECOND);
i = 0;
while(i < 5) {
etimer_set(&et, 2*CLOCK_SECOND);
etimer_set(&et, 2 * CLOCK_SECOND);
printf("=======================\n");
ct = clock_time();
rt_now = RTIMER_NOW();
rt_for = rt_now + RTIMER_SECOND;
printf("Now=%u (clock = %u) - For=%u\n", rt_now, ct, rt_for);
if (rtimer_set(&rt, rt_for, 1,
if(rtimer_set(&rt, rt_for, 1,
(void (*)(struct rtimer *, void *))rt_callback, NULL) != RTIMER_OK) {
printf("Error setting\n");
}

View file

@ -81,7 +81,7 @@ static void
timeout_handler(void)
{
static int seq_id;
struct uip_udp_conn * this_conn;
struct uip_udp_conn *this_conn;
leds_on(LEDS_RED);
memset(buf, 0, MAX_PAYLOAD_LEN);
@ -117,7 +117,7 @@ PROCESS_THREAD(udp_client_process, ev, data)
PROCESS_BEGIN();
PRINTF("UDP client process started\n");
uip_ip6addr(&ipaddr,0xfe80,0,0,0,0x0215,0x2000,0x0002,0x2145);
uip_ip6addr(&ipaddr, 0xfe80, 0, 0, 0, 0x0215, 0x2000, 0x0002, 0x2145);
/* new connection with remote host */
l_conn = udp_new(&ipaddr, UIP_HTONS(3000), NULL);
if(!l_conn) {
@ -128,9 +128,9 @@ PROCESS_THREAD(udp_client_process, ev, data)
PRINTF("Link-Local connection with ");
PRINT6ADDR(&l_conn->ripaddr);
PRINTF(" local/remote port %u/%u\n",
UIP_HTONS(l_conn->lport), UIP_HTONS(l_conn->rport));
UIP_HTONS(l_conn->lport), UIP_HTONS(l_conn->rport));
uip_ip6addr(&ipaddr,0xaaaa,0,0,0,0x0215,0x2000,0x0002,0x2145);
uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0x0215, 0x2000, 0x0002, 0x2145);
g_conn = udp_new(&ipaddr, UIP_HTONS(3000), NULL);
if(!g_conn) {
PRINTF("udp_new g_conn error.\n");
@ -140,7 +140,7 @@ PROCESS_THREAD(udp_client_process, ev, data)
PRINTF("Global connection with ");
PRINT6ADDR(&g_conn->ripaddr);
PRINTF(" local/remote port %u/%u\n",
UIP_HTONS(g_conn->lport), UIP_HTONS(g_conn->rport));
UIP_HTONS(g_conn->lport), UIP_HTONS(g_conn->rport));
etimer_set(&et, SEND_INTERVAL);

View file

@ -72,7 +72,8 @@ ping6handler()
count, PING6_DATALEN);
uip_len = UIP_ICMPH_LEN + UIP_ICMP6_ECHO_REQUEST_LEN + UIP_IPH_LEN + PING6_DATALEN;
uip_len = UIP_ICMPH_LEN + UIP_ICMP6_ECHO_REQUEST_LEN + UIP_IPH_LEN
+ PING6_DATALEN;
UIP_IP_BUF->len[0] = (uint8_t)((uip_len - 40) >> 8);
UIP_IP_BUF->len[1] = (uint8_t)((uip_len - 40) & 0x00FF);
@ -104,9 +105,9 @@ PROCESS_THREAD(ping6_process, ev, data)
PRINTF("ping6 running.\n");
PRINTF("Button 1: 5 pings 16 byte payload.\n");
uip_ip6addr(&dest_addr,0xaaaa,0,0,0,0x0215,0x2000,0x0002,0x2145);
uip_ip6addr(&dest_addr, 0xaaaa, 0, 0, 0, 0x0215, 0x2000, 0x0002, 0x2145);
count = 0;
icmp6_new(NULL);
while(1) {
@ -124,7 +125,7 @@ PROCESS_THREAD(ping6_process, ev, data)
PRINTF("Echo Reply\n");
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/

View file

@ -92,9 +92,10 @@ static void
print_stats()
{
PRINTF("tl=%lu, ts=%lu, bs=%lu, bc=%lu\n",
rimestats.toolong, rimestats.tooshort, rimestats.badsynch, rimestats.badcrc);
PRINTF("llrx=%lu, lltx=%lu, rx=%lu, tx=%lu\n",
rimestats.llrx, rimestats.lltx, rimestats.rx, rimestats.tx);
rimestats.toolong, rimestats.tooshort, rimestats.badsynch,
rimestats.badcrc);
PRINTF("llrx=%lu, lltx=%lu, rx=%lu, tx=%lu\n", rimestats.llrx,
rimestats.lltx, rimestats.rx, rimestats.tx);
}
#endif
/*---------------------------------------------------------------------------*/
@ -112,7 +113,7 @@ print_local_addresses(void)
PRINTF(" ");
PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);
PRINTF("\n");
if (state == ADDR_TENTATIVE) {
if(state == ADDR_TENTATIVE) {
uip_ds6_if.addr_list[i].state = ADDR_PREFERRED;
}
}
@ -131,7 +132,8 @@ create_dag()
print_local_addresses();
dag = rpl_set_root(RPL_DEFAULT_INSTANCE, &uip_ds6_get_global(ADDR_PREFERRED)->ipaddr);
dag = rpl_set_root(RPL_DEFAULT_INSTANCE,
&uip_ds6_get_global(ADDR_PREFERRED)->ipaddr);
if(dag != NULL) {
uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);
rpl_set_prefix(dag, &ipaddr, 64);
@ -167,7 +169,7 @@ PROCESS_THREAD(udp_server_process, ev, data)
tcpip_handler();
#if (BUTTON_SENSOR_ON && (DEBUG==DEBUG_PRINT))
} else if(ev == sensors_event && data == &button_sensor) {
print_stats();
print_stats();
#endif /* BUTTON_SENSOR_ON */
}
}

View file

@ -8,9 +8,6 @@ DEFINES+=MODEL_N740
# These examples don't need code banking so we turn it off
#HAVE_BANKING=1
CONTIKI_PROJECT = hello_world clock_test rf_test_rx rf_test_tx
# New examples added by George Oikonomou - Loughborough University
CONTIKI_PROJECT += timer-test blink-hello broadcast-rime
all: $(CONTIKI_PROJECT)

View file

@ -36,13 +36,6 @@ make hello_world DEFINES=MODEL_N601
These make options are defined in /platform/sensinode/Makefile.sensinode
Descriptions of applications:
hello_world A simple hello world app.
clock_test Test and example of sys/clock.h related features.
rf_test_tx Test for transmitting packets
rf_test_rc Test for receiving packets
Recent Additions:
udp-ipv6 UDP client-server example over uIPv6. Uses link-local and global
addresses. Button 1 on the client will send an echo request.
broadcast-rime Just a broadcast rime example, slightly modified
@ -54,4 +47,4 @@ event-post Demonstrating the interaction between two processes with custom
blink-hello Hello World with LED blinking.
timer-test Same as clock_test above + testing the rtimer-arch code
border-router 802.15.4 to SLIP bridge example. The node will forward packets
from the 15.4 network to its UART (and thus a connected PC over SLIP)
from the 15.4 network to its UART (and thus a connected PC over SLIP)

View file

@ -10,82 +10,53 @@
#include "contiki.h"
#include "dev/leds.h"
#include <stdio.h> /* For printf() */
#include <stdio.h>
/*---------------------------------------------------------------------------*/
/* We declare the two processes */
PROCESS(hello_world_process, "Hello world process");
PROCESS(blink_process, "LED blink process");
/* We require the processes to be started automatically */
AUTOSTART_PROCESSES(&hello_world_process, &blink_process);
/*---------------------------------------------------------------------------*/
/* Implementation of the first process */
PROCESS_THREAD(hello_world_process, ev, data)
{
/* variables are declared static to ensure their values are maintained
between subsequent calls.
All the code between PROCESS_THREAD and PROCESS_BEGIN() runs each time
the process is invoked. */
static struct etimer timer;
static int count;
/* any process must start with this. */
PROCESS_BEGIN();
/* set the etimer module to generate an event in one second.
CLOCK_CONF_SECOND is #define as 128 */
etimer_set(&timer, CLOCK_CONF_SECOND * 4);
count = 0;
/* Don't declare variables after PROCESS_BEGIN.
* While it will compile fine with TARGET=native (gcc is happy),
* SDCC doesn't like it. Soon as you try TARGET=sensinode you will get:
* syntax error: token -> 'int' ;
* Try uncommenting the line below and observe the results */
/* int whoops = 0;
* whoops = 0; */
while (1)
{
/* wait here for an event to happen */
PROCESS_WAIT_EVENT();
/* This achieves the same
* PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_TIMER); */
static struct etimer timer;
static int count;
/* if the event is the timer event as expected... */
if(ev == PROCESS_EVENT_TIMER)
{
/* do the process work */
printf("Sensor says no... #%d\r\n", count);
count ++;
/* reset the timer so it will generate an other event
* the exact same time after it expired (periodicity guaranteed) */
etimer_reset(&timer);
}
/* and loop */
PROCESS_BEGIN();
etimer_set(&timer, CLOCK_CONF_SECOND * 4);
count = 0;
while(1) {
PROCESS_WAIT_EVENT();
if(ev == PROCESS_EVENT_TIMER) {
printf("Sensor says no... #%d\r\n", count);
count++;
etimer_reset(&timer);
}
/* any process must end with this, even if it is never reached. */
PROCESS_END();
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
/* Implementation of the second process */
PROCESS_THREAD(blink_process, ev, data)
{
static struct etimer timer;
PROCESS_BEGIN();
while (1)
{
/* we set the timer from here every time */
etimer_set(&timer, CLOCK_CONF_SECOND);
/* and wait until the event we receive is the one we're waiting for */
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_TIMER);
printf("Blink... (state %0.2X).\r\n", leds_get());
/* update the LEDs */
leds_toggle(LEDS_GREEN);
}
PROCESS_END();
static struct etimer timer;
PROCESS_BEGIN();
while(1) {
etimer_set(&timer, CLOCK_CONF_SECOND);
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_TIMER);
printf("Blink... (state %0.2X).\r\n", leds_get());
leds_toggle(LEDS_GREEN);
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/

View file

@ -71,11 +71,11 @@ print_local_addresses(void) CC_NON_BANKED
for(i = 0; i < UIP_DS6_ADDR_NB; i++) {
state = uip_ds6_if.addr_list[i].state;
if(uip_ds6_if.addr_list[i].isused && (state == ADDR_TENTATIVE || state
== ADDR_PREFERRED)) {
== ADDR_PREFERRED)) {
PUTSTRING(" ");
PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);
PUTCHAR('\n');
if (state == ADDR_TENTATIVE) {
if(state == ADDR_TENTATIVE) {
uip_ds6_if.addr_list[i].state = ADDR_PREFERRED;
}
}

View file

@ -58,7 +58,7 @@ static void
slip_input_callback(void)
{
PRINTF("SIN: %u\n", uip_len);
if((char) uip_buf[0] == '!') {
if((char)uip_buf[0] == '!') {
PRINTF("Got configuration message of type %c\n", uip_buf[1]);
uip_len = 0;
if((char)uip_buf[1] == 'P') {

View file

@ -58,21 +58,25 @@
PROCESS(example_broadcast_process, "BROADCAST example");
AUTOSTART_PROCESSES(&example_broadcast_process);
/*---------------------------------------------------------------------------*/
static void broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)
static void
broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)
{
leds_toggle(LEDS_RED);
PRINTF("broadcast message received from %02x.%02x\n", from->u8[0], from->u8[1]);
PRINTF("Size=0x%02x: '0x%04x'\n", packetbuf_datalen(), *(uint16_t *) packetbuf_dataptr());
PRINTF("broadcast message received from %02x.%02x\n", from->u8[0],
from->u8[1]);
PRINTF("Size=0x%02x: '0x%04x'\n", packetbuf_datalen(),
*(uint16_t *)packetbuf_dataptr());
}
static void print_rime_stats()
/*---------------------------------------------------------------------------*/
static void
print_rime_stats()
{
PRINTF("\nNetwork Stats\n");
PRINTF(" TX=%lu , RX=%lu\n", rimestats.tx, rimestats.rx);
PRINTF("LL-TX=%lu , LL-RX=%lu\n", rimestats.lltx, rimestats.llrx);
PRINTF(" Long=%lu , Short=%lu\n", rimestats.toolong, rimestats.tooshort);
PRINTF("T/Out=%lu , CCA-Err=%lu\n", rimestats.timedout,
rimestats.contentiondrop);
rimestats.contentiondrop);
}
static const struct broadcast_callbacks bc_rx = { broadcast_recv };
@ -90,7 +94,7 @@ PROCESS_THREAD(example_broadcast_process, ev, data)
PRINTF("Start\n");
broadcast_open(&broadcast, BROADCAST_CHANNEL, &bc_rx);
PRINTF("Open Broadcast Connection, channel %u\n", BROADCAST_CHANNEL);
// leds_off(LEDS_ALL);
while(1) {
/* Delay 2-4 seconds */
@ -98,8 +102,9 @@ PROCESS_THREAD(example_broadcast_process, ev, data)
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
leds_on(LEDS_GREEN);
packetbuf_copyfrom(&counter, sizeof(counter));
PRINTF("Sending %u bytes: 0x%04x\n", packetbuf_datalen(), *(uint16_t *) packetbuf_dataptr());
if (broadcast_send(&broadcast) == 0) {
PRINTF("Sending %u bytes: 0x%04x\n", packetbuf_datalen(),
*(uint16_t *)packetbuf_dataptr());
if(broadcast_send(&broadcast) == 0) {
PRINTF("Error Sending\n");
}

View file

@ -181,7 +181,8 @@ broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)
/* Convert RSSI to the loc. eng. format */
parameters.rssi[from->u8[1] - 1] = (-2 * rssi);
/* Raw dump the packetbuf into the ref_coords struct */
memcpy(&ref_coords[from->u8[1] - 1], packetbuf_dataptr(), 2 * sizeof(uint8_t));
memcpy(&ref_coords[from->u8[1] - 1], packetbuf_dataptr(),
2 * sizeof(uint8_t));
}
return;
@ -194,7 +195,8 @@ broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)
*/
/*---------------------------------------------------------------------------*/
static void
set_imaginary_ref_nodes() {
set_imaginary_ref_nodes()
{
ref_coords[0].x = 1;
ref_coords[0].y = 5;
parameters.rssi[0] = SAMPLE_RSSI;
@ -243,11 +245,11 @@ PROCESS_THREAD(blindnode_bcast_rec, ev, data)
* Just hard-coding measurement parameters here.
* Ideally, this should be part of a calibration mechanism
*/
parameters.alpha=SAMPLE_ALPHA;
parameters.x_min=0;
parameters.x_delta=255;
parameters.y_min=0;
parameters.y_delta=255;
parameters.alpha = SAMPLE_ALPHA;
parameters.x_min = 0;
parameters.x_delta = 255;
parameters.y_min = 0;
parameters.y_delta = 255;
set_imaginary_ref_nodes();
@ -263,13 +265,15 @@ PROCESS_THREAD(blindnode_bcast_rec, ev, data)
* With the hard-coded parameters and locations, we will calculate
* for all possible values of n [0 , 31]
*/
parameters.n=n;
parameters.n = n;
calculate();
n++;
if(n==32) { n=0; }
if(n == 32) {
n = 0;
}
/* Send our calculated location to some monitoring node */
packetbuf_copyfrom(&coords, 2*sizeof(uint8_t));
packetbuf_copyfrom(&coords, 2 * sizeof(uint8_t));
broadcast_send(&broadcast);
}
PROCESS_END();

View file

@ -47,4 +47,3 @@ netstack_init(void)
NETSTACK_RADIO.init();
}
/*---------------------------------------------------------------------------*/

View file

@ -88,13 +88,13 @@ init(void)
}
/*---------------------------------------------------------------------------*/
const struct rdc_driver stub_rdc_driver = {
"stub-rdc",
init,
send,
send_list,
input,
on,
off,
cca,
"stub-rdc",
init,
send,
send_list,
input,
on,
off,
cca,
};
/*---------------------------------------------------------------------------*/

View file

@ -14,119 +14,85 @@
#include "contiki.h"
//#include "dev/leds.h"
#include <limits.h>
#include <stdio.h> /* For printf() */
#include <stdio.h>
#include "event-post.h"
/* This is our event type */
static process_event_t event_data_ready;
/*---------------------------------------------------------------------------*/
/* Declare the two processes here */
PROCESS(sensor_process, "Sensor process");
PROCESS(print_process, "Print process");
/* Tell Contiki that we want them to start automatically */
AUTOSTART_PROCESSES(&sensor_process, &print_process);
/*---------------------------------------------------------------------------*/
/* Implementation "Sensor Process" */
PROCESS_THREAD(sensor_process, ev, data)
{
/* static variables to preserve values across consecutive calls of this
* process. */
/* Set an etimer */
static struct etimer timer;
/* And the 'sensor' monitoring variable */
static struct event_struct es;
static struct etimer timer;
static struct event_struct es;
PROCESS_BEGIN();
PROCESS_BEGIN();
/* Set some near-the-limit initial values */
/* signed primitives */
es.s_val = SHRT_MAX-2;
es.i_val = INT_MAX-2;
es.l_val = LONG_MAX-2;
/* sizeof(long long) == sizeof(long) on sensinodes - see other examples*/
es.ll_val = LONG_MAX-2;
/* and some typedef-ed unsigned variables */
es.u8_val = UCHAR_MAX-2;
es.u16_val = USHRT_MAX-2;
es.u32_val = ULONG_MAX-2;
es.s_val = SHRT_MAX - 2;
es.i_val = INT_MAX - 2;
es.l_val = LONG_MAX - 2;
es.ll_val = LONG_MAX - 2;
es.u8_val = UCHAR_MAX - 2;
es.u16_val = USHRT_MAX - 2;
es.u32_val = ULONG_MAX - 2;
/* allocate the required event */
event_data_ready = process_alloc_event();
/* process_event_t is actually a u_char. What did the OS allocate for us? */
printf("Contiki allocated event ID %d.\r\n", event_data_ready);
/* Set a timer here. We will generate an event every times this timer expires
* etimer_set accepts clock ticks as its 2nd argument.
* CLOCK_CONF_SECOND is the number of ticks per second.
* This CLOCK_CONF_SECOND * N = N seconds */
etimer_set(&timer, CLOCK_CONF_SECOND * 2);
while (1)
{
printf("Sensor process: Wait for timer event...\r\n");
/* Wait on our timer */
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_TIMER);
event_data_ready = process_alloc_event();
/* blip */
/* leds_toggle(LEDS_BLUE); */
printf("Contiki allocated event ID %d.\r\n", event_data_ready);
/* Set the 'sensor' value before throwing the event */
printf("Sensor Process: Incrementing values...\r\n");
es.s_val++;
es.i_val++;
es.l_val++;
es.ll_val++;
es.u8_val++;
es.u16_val++;
es.u32_val++;
etimer_set(&timer, CLOCK_CONF_SECOND * 2);
/* Post our event.
* N.B. es is declared static.
* Try passing a volatile variable and observe the results... */
printf("Sensor Process: Generating 'Data Ready' event.\r\n");
process_post(&print_process, event_data_ready, &es);
while(1) {
printf("Sensor process: Wait for timer event...\r\n");
/* reset the timer so we can wait on it again */
etimer_reset(&timer);
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_TIMER);
}
PROCESS_END();
printf("Sensor Process: Incrementing values...\r\n");
es.s_val++;
es.i_val++;
es.l_val++;
es.ll_val++;
es.u8_val++;
es.u16_val++;
es.u32_val++;
printf("Sensor Process: Generating 'Data Ready' event.\r\n");
process_post(&print_process, event_data_ready, &es);
etimer_reset(&timer);
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
/* Implementation of "Print Process" */
PROCESS_THREAD(print_process, ev, data)
{
struct event_struct * sd;
struct event_struct *sd;
PROCESS_BEGIN();
while (1)
{
/* Stop here and wait until "event_data_ready" occurs */
PROCESS_WAIT_EVENT_UNTIL(ev == event_data_ready);
/* When the event occurs, the incoming data will be stored in
* process_data_t data (careful, this is void *)
*
* Print away...
* es is volatile, we need to set it = data again and dereference it. */
sd = data;
printf("Print Process - Data Ready:\r\n");
printf(" s: %d\r\n", sd->s_val);
printf(" i: %d\r\n", sd->i_val);
printf(" l: %ld\r\n", sd->l_val);
printf(" ll: %lld\r\n", sd->ll_val);
printf(" u8: %u\r\n", sd->u8_val);
printf(" u16: %u\r\n", sd->u16_val);
printf(" u32: %lu\r\n", sd->u32_val);
PROCESS_BEGIN();
/* aaaaand back to waiting for the next event */
}
PROCESS_END();
while(1) {
PROCESS_WAIT_EVENT_UNTIL(ev == event_data_ready);
sd = data;
printf("Print Process - Data Ready:\r\n");
printf(" s: %d\r\n", sd->s_val);
printf(" i: %d\r\n", sd->i_val);
printf(" l: %ld\r\n", sd->l_val);
printf(" ll: %lld\r\n", sd->ll_val);
printf(" u8: %u\r\n", sd->u8_val);
printf(" u16: %u\r\n", sd->u16_val);
printf(" u32: %lu\r\n", sd->u32_val);
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/

View file

@ -10,11 +10,11 @@
#define EVENT_POST_H_
struct event_struct {
short s_val;
int i_val;
long l_val;
short s_val;
int i_val;
long l_val;
long long ll_val;
uint8_t u8_val;
uint8_t u8_val;
uint16_t u16_val;
uint32_t u32_val;
};

View file

@ -1,23 +0,0 @@
/**
* \file
* Basic hello world example
* \author
* Zach Shelby <zach@sensinode.com>
*/
#include "contiki.h"
#include <stdio.h> /* For printf() */
/*---------------------------------------------------------------------------*/
PROCESS(hello_world_process, "Hello world process");
AUTOSTART_PROCESSES(&hello_world_process);
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(hello_world_process, ev, data)
{
PROCESS_BEGIN();
printf("Hello World!\n");
PROCESS_END();
}
/*---------------------------------------------------------------------------*/

View file

@ -1,60 +0,0 @@
/**
* \file
* RF test suite, receiver
* \author
* Zach Shelby <zach@sensinode.com>
*/
#include "contiki.h"
#include "net/rime.h"
#include <stdio.h> /* For printf() */
/*---------------------------------------------------------------------------*/
PROCESS(rf_test_process, "RF test RX process");
AUTOSTART_PROCESSES(&rf_test_process);
static struct etimer et;
static struct broadcast_conn bc;
static const struct broadcast_callbacks broadcast_callbacks = {recv_bc};
static struct unicast_conn uc;
static const struct unicast_callbacks unicast_callbacks = {recv_uc};
static void
recv_bc(struct broadcast_conn *c, rimeaddr_t *from)
{
printf("broadcast from %02x.%02x len = %d buf = %s\n",
from->u8[0],
from->u8[1],
packetbuf_datalen(),
(char *)packetbuf_dataptr());
}
static void
recv_uc(struct unicast_conn *c, rimeaddr_t *from)
{
printf("unicast from %02x.%02x len = %d buf = %s\n",
from->u8[0],
from->u8[1],
packetbuf_datalen(),
(char *)packetbuf_dataptr());
}
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(rf_test_process, ev, data)
{
PROCESS_BEGIN();
printf("\nStarting CC2430 RF test suite...\n");
broadcast_open(&bc, 128, &broadcast_callbacks);
unicast_open(&uc, 128, &unicast_callbacks);
while(1) {
etimer_set(&et, CLOCK_SECOND);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
etimer_reset(&et);
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/

View file

@ -1,50 +0,0 @@
/**
* \file
* RF test suite, transmitter
* \author
* Zach Shelby <zach@sensinode.com>
*/
#include "contiki.h"
#include "net/rime.h"
#include <stdio.h> /* For printf() */
/*---------------------------------------------------------------------------*/
PROCESS(rf_test_process, "RF test TX process");
AUTOSTART_PROCESSES(&rf_test_process);
static struct etimer et;
static struct broadcast_conn bc;
static struct unicast_conn uc;
rimeaddr_t addr;
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(rf_test_process, ev, data)
{
PROCESS_BEGIN();
printf("\nStarting CC2430 RF test suite...\n");
broadcast_open(&bc, 128, 0);
unicast_open(&uc, 128, 0);
while(1) {
etimer_set(&et, CLOCK_SECOND);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
etimer_reset(&et);
printf("Sending broadcast packet\n");
packetbuf_copyfrom("Hello everyone", 14);
broadcast_send(&bc);
// TODO: Fix, freezes on unicast_send()
// printf("Sending unicast packet\n");
// addr.u8[0] = 0;
// addr.u8[1] = 2;
// packetbuf_copyfrom("Hello you", 9);
// unicast_send(&uc, &addr);
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/

View file

@ -77,11 +77,11 @@
/*---------------------------------------------------------------------------*/
int8_t
read_sensor(char * rs)
read_sensor(char *rs)
{
/* Sensor Values */
static int rv;
static struct sensors_sensor * sensor;
static struct sensors_sensor *sensor;
/* Those 3 variables are only used for debugging */
#if DEBUG
@ -93,7 +93,7 @@ read_sensor(char * rs)
uint8_t len = 0;
sensor = sensors_find(ADC_SENSOR);
if (!sensor) {
if(!sensor) {
PRINTF("ADC not found\n");
return (SENSOR_ADC_OFF);
}
@ -103,13 +103,13 @@ read_sensor(char * rs)
r = uip_ntohs(r);
PRINTF("R=%u\n", r);
if (r & REQUEST_BIT_CHIPID) {
if(r & REQUEST_BIT_CHIPID) {
uint8_t chipid = CHIPID;
memcpy(rs + len, &chipid, sizeof(chipid));
len += sizeof(chipid);
PRINTF("ChipID=0x%02x\n", chipid);
}
if (r & REQUEST_BIT_UPTIME) {
if(r & REQUEST_BIT_UPTIME) {
/* Uptime */
unsigned long l;
@ -118,33 +118,33 @@ read_sensor(char * rs)
len += sizeof(l);
PRINTF("Uptime=%lu secs\n", uip_ntohl(l));
}
if (r & REQUEST_BIT_LIGHT) {
if(r & REQUEST_BIT_LIGHT) {
rv = sensor->value(ADC_SENSOR_TYPE_LIGHT);
if(rv != -1) {
#if DEBUG
sane = (float)(rv * 0.4071);
dec = sane;
frac = sane - dec;
PRINTF(" Light=%d.%02ulux (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF(" Light=%d.%02ulux (%d)\n", dec, (unsigned int)(frac * 100), rv);
#endif
memcpy(rs + len, &rv, sizeof(rv));
len += sizeof(rv);
}
}
if (r & REQUEST_BIT_TEMP) {
if(r & REQUEST_BIT_TEMP) {
rv = sensor->value(ADC_SENSOR_TYPE_TEMP);
if(rv != -1) {
#if DEBUG
sane = ((rv * 0.61065 - 773) / 2.45);
dec = sane;
frac = sane - dec;
PRINTF(" Temp=%d.%02u C (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF(" Temp=%d.%02u C (%d)\n", dec, (unsigned int)(frac * 100), rv);
#endif
memcpy(rs + len, &rv, sizeof(rv));
len += sizeof(rv);
}
}
if (r & (REQUEST_BIT_VDD | REQUEST_BIT_BAT)) {
if(r & (REQUEST_BIT_VDD | REQUEST_BIT_BAT)) {
/* We want VDD for both cases */
rv = sensor->value(ADC_SENSOR_TYPE_VDD);
if(rv != -1) {
@ -152,7 +152,7 @@ read_sensor(char * rs)
sane = rv * 3.75 / 2047;
dec = sane;
frac = sane - dec;
PRINTF("Supply=%d.%02uV (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF("Supply=%d.%02uV (%d)\n", dec, (unsigned int)(frac * 100), rv);
/* Store rv temporarily in dec so we can use it for the battery */
dec = rv;
#endif
@ -160,21 +160,21 @@ read_sensor(char * rs)
len += sizeof(rv);
}
/* And then carry on with battery if needed */
if (r & REQUEST_BIT_BAT) {
if(r & REQUEST_BIT_BAT) {
rv = sensor->value(ADC_SENSOR_TYPE_BATTERY);
if(rv != -1) {
#if DEBUG
sane = (11.25 * rv * dec) / (0x7FE002);
dec = sane;
frac = sane - dec;
PRINTF(" Batt.=%d.%02uV (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF(" Batt.=%d.%02uV (%d)\n", dec, (unsigned int)(frac * 100), rv);
#endif
memcpy(rs + len, &rv, sizeof(rv));
len += sizeof(rv);
}
}
}
if (r & REQUEST_BIT_ACC) {
if(r & REQUEST_BIT_ACC) {
rv = sensor->value(ADC_SENSOR_TYPE_ACC_X);
if(rv != -1) {
#if DEBUG
@ -187,7 +187,7 @@ read_sensor(char * rs)
if(sane < 0 && dec == 0) {
PRINTF('-');
}
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac * 100), rv);
#endif
memcpy(rs + len, &rv, sizeof(rv));
len += sizeof(rv);
@ -203,7 +203,7 @@ read_sensor(char * rs)
if(sane < 0 && dec == 0) {
PRINTF('-');
}
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac * 100), rv);
#endif
memcpy(rs + len, &rv, sizeof(rv));
len += sizeof(rv);
@ -219,25 +219,25 @@ read_sensor(char * rs)
if(sane < 0 && dec == 0) {
PRINTF('-');
}
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac * 100), rv);
#endif
memcpy(rs + len, &rv, sizeof(rv));
len += sizeof(rv);
}
}
if (r & REQUEST_BIT_L1_SET) {
if(r & REQUEST_BIT_L1_SET) {
leds_toggle(LEDS_GREEN);
}
if (r & REQUEST_BIT_L2_SET) {
if(r & REQUEST_BIT_L2_SET) {
leds_toggle(LEDS_RED);
}
if (r & REQUEST_BIT_LED_GET) {
if(r & REQUEST_BIT_LED_GET) {
uint8_t leds = leds_get();
memcpy(rs + len, &leds, sizeof(leds));
len += sizeof(leds);
PRINTF(" LED 2=%u\n", leds);
}
if (r & REQUEST_BIT_P0_GET) {
if(r & REQUEST_BIT_P0_GET) {
uint8_t p0 = P0_3;
memcpy(rs + len, &p0, sizeof(p0));
len += sizeof(p0);

View file

@ -79,7 +79,7 @@ static uint16_t len;
#define SENSOR_ADC_OFF 1
#define SENSOR_UNKNOWN 2
int8_t read_sensor(char * rs);
int8_t read_sensor(char *rs);
/*---------------------------------------------------------------------------*/
extern const struct sensors_sensor adc_sensor;
/*---------------------------------------------------------------------------*/
@ -98,7 +98,7 @@ tcpip_handler(void)
PRINT6ADDR(&UIP_IP_BUF->srcipaddr);
PRINTF("]:%u\n", UIP_HTONS(UIP_UDP_BUF->srcport));
len = read_sensor(buf);
if( len ) {
if(len) {
server_conn->rport = UIP_UDP_BUF->srcport;
uip_ipaddr_copy(&server_conn->ripaddr, &UIP_IP_BUF->srcipaddr);
uip_udp_packet_send(server_conn, buf, len);

View file

@ -110,7 +110,9 @@
#define SEND_BATTERY_INFO 0
#if SEND_BATTERY_INFO
#include "sensors-example.h"
static void bc_rx(struct broadcast_conn *c, const rimeaddr_t *from) {
static void
bc_rx(struct broadcast_conn *c, const rimeaddr_t *from)
{
return;
}
@ -138,7 +140,7 @@ PROCESS_THREAD(buttons_test_process, ev, data)
PROCESS_BEGIN();
while (1) {
while(1) {
PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event);
@ -165,7 +167,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
/* Sensor Values */
static int rv;
static struct sensors_sensor * sensor;
static struct sensors_sensor *sensor;
static float sane = 0;
static int dec;
static float frac;
@ -187,7 +189,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
/* Set an etimer. We take sensor readings when it expires and reset it. */
etimer_set(&et, CLOCK_SECOND * 2);
while (1) {
while(1) {
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
@ -196,7 +198,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
* Return value -1 means sensor not available or turned off in conf
*/
sensor = sensors_find(ADC_SENSOR);
if (sensor) {
if(sensor) {
putstring("------------------\n");
leds_on(LEDS_RED);
/*
@ -217,7 +219,8 @@ PROCESS_THREAD(sensors_test_process, ev, data)
sane = ((rv * 0.61065 - 773) / 2.45);
dec = sane;
frac = sane - dec;
PRINTF(" Temp=%d.%02u C (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF(" Temp=%d.%02u C (%d)\n", dec, (unsigned int)(frac * 100),
rv);
}
/*
* Accelerometer: Freescale Semiconductor MMA7340L
@ -263,7 +266,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
if(sane < 0 && dec == 0) {
putchar('-');
}
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac * 100), rv);
}
rv = sensor->value(ADC_SENSOR_TYPE_ACC_Y);
if(rv != -1) {
@ -275,7 +278,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
if(sane < 0 && dec == 0) {
putchar('-');
}
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac * 100), rv);
}
rv = sensor->value(ADC_SENSOR_TYPE_ACC_Z);
if(rv != -1) {
@ -287,7 +290,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
if(sane < 0 && dec == 0) {
putchar('-');
}
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF("%d.%02ug (%d)\n", dec, (unsigned int)(frac * 100), rv);
}
/*
* Light: Vishay Semiconductors TEPT4400
@ -305,7 +308,8 @@ PROCESS_THREAD(sensors_test_process, ev, data)
sane = (float)(rv * 0.4071);
dec = sane;
frac = sane - dec;
PRINTF(" Light=%d.%02ulux (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF(" Light=%d.%02ulux (%d)\n", dec, (unsigned int)(frac * 100),
rv);
}
/*
* Power Supply Voltage.
@ -326,7 +330,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
sane = rv * 3.75 / 2047;
dec = sane;
frac = sane - dec;
PRINTF("Supply=%d.%02uV (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF("Supply=%d.%02uV (%d)\n", dec, (unsigned int)(frac * 100), rv);
/* Store rv temporarily in dec so we can use it for the battery */
dec = rv;
}
@ -356,7 +360,7 @@ PROCESS_THREAD(sensors_test_process, ev, data)
sane = (11.25 * rv * dec) / (0x7FE002);
dec = sane;
frac = sane - dec;
PRINTF(" Batt.=%d.%02uV (%d)\n", dec, (unsigned int)(frac*100), rv);
PRINTF(" Batt.=%d.%02uV (%d)\n", dec, (unsigned int)(frac * 100), rv);
#if SEND_BATTERY_INFO
sd.bat = rv;
packetbuf_copyfrom(&sd, sizeof(sd));
@ -368,5 +372,5 @@ PROCESS_THREAD(sensors_test_process, ev, data)
etimer_reset(&et);
}
PROCESS_END();
}
}
/*---------------------------------------------------------------------------*/

View file

@ -256,7 +256,7 @@ PROCESS_THREAD(serial_flash_process, ev, data)
while(M25P16_WIP());
/* Drop to Deep Power Down */
m25p16_dp();
counter ++;
counter++;
}
n740_analog_activate();
}

View file

@ -47,4 +47,3 @@ netstack_init(void)
NETSTACK_RADIO.init();
}
/*---------------------------------------------------------------------------*/

View file

@ -88,13 +88,13 @@ init(void)
}
/*---------------------------------------------------------------------------*/
const struct rdc_driver stub_rdc_driver = {
"stub-rdc",
init,
send,
send_list,
input,
on,
off,
cca,
"stub-rdc",
init,
send,
send_list,
input,
on,
off,
cca,
};
/*---------------------------------------------------------------------------*/

View file

@ -48,7 +48,8 @@ AUTOSTART_PROCESSES(&clock_test_process);
/*---------------------------------------------------------------------------*/
#if TEST_RTIMER
void
rt_callback(struct rtimer *t, void *ptr) {
rt_callback(struct rtimer *t, void *ptr)
{
rt_now = RTIMER_NOW();
ct = clock_time();
printf("Task called at %u (clock = %u)\n", rt_now, ct);
@ -73,7 +74,7 @@ PROCESS_THREAD(clock_test_process, ev, data)
end_count = RTIMER_NOW();
diff = end_count - start_count;
printf("Requested: %u usec, Real: %u rtimer ticks = ~%u us\n",
10000 * i, diff, diff * 64);
10000 * i, diff, diff * 64);
i++;
}
#endif
@ -82,14 +83,14 @@ PROCESS_THREAD(clock_test_process, ev, data)
printf("Rtimer Test, 1 sec (%u rtimer ticks):\n", RTIMER_SECOND);
i = 0;
while(i < 5) {
etimer_set(&et, 2*CLOCK_SECOND);
etimer_set(&et, 2 * CLOCK_SECOND);
printf("=======================\n");
ct = clock_time();
rt_now = RTIMER_NOW();
rt_for = rt_now + RTIMER_SECOND;
printf("Now=%u (clock = %u) - For=%u\n", rt_now, ct, rt_for);
if (rtimer_set(&rt, rt_for, 1,
(void (*)(struct rtimer *, void *))rt_callback, NULL) != RTIMER_OK) {
if(rtimer_set(&rt, rt_for, 1, (rtimer_callback_t) rt_callback, NULL) !=
RTIMER_OK) {
printf("Error setting\n");
}
@ -99,7 +100,8 @@ PROCESS_THREAD(clock_test_process, ev, data)
#endif
#if TEST_ETIMER
printf("Clock tick and etimer test, 1 sec (%u clock ticks):\n", CLOCK_SECOND);
printf("Clock tick and etimer test, 1 sec (%u clock ticks):\n",
CLOCK_SECOND);
i = 0;
while(i < 10) {
etimer_set(&et, CLOCK_SECOND);

View file

@ -88,7 +88,7 @@ static void
timeout_handler(void)
{
static int seq_id;
struct uip_udp_conn * this_conn;
struct uip_udp_conn *this_conn;
leds_on(LEDS_RED);
memset(buf, 0, MAX_PAYLOAD_LEN);
@ -131,9 +131,9 @@ print_local_addresses(void)
for(i = 0; i < UIP_DS6_ADDR_NB; i++) {
state = uip_ds6_if.addr_list[i].state;
if(uip_ds6_if.addr_list[i].isused && (state == ADDR_TENTATIVE || state
== ADDR_PREFERRED)) {
== ADDR_PREFERRED)) {
PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);
if (state == ADDR_TENTATIVE) {
if(state == ADDR_TENTATIVE) {
uip_ds6_if.addr_list[i].state = ADDR_PREFERRED;
}
PRINTF(" state: %u.\n", uip_ds6_if.addr_list[i].state);
@ -168,7 +168,7 @@ PROCESS_THREAD(udp_client_process, ev, data)
print_local_addresses();
uip_ip6addr(&ipaddr,0xfe80,0,0,0,0x0215,0x2000,0x0002,0x0302);
uip_ip6addr(&ipaddr, 0xfe80, 0, 0, 0, 0x0215, 0x2000, 0x0002, 0x0302);
/* new connection with remote host */
l_conn = udp_new(&ipaddr, UIP_HTONS(3000), NULL);
if(!l_conn) {
@ -179,10 +179,11 @@ PROCESS_THREAD(udp_client_process, ev, data)
PRINTF("Link-Local connection with ");
PRINT6ADDR(&l_conn->ripaddr);
PRINTF(" local/remote port %u/%u\n",
UIP_HTONS(l_conn->lport), UIP_HTONS(l_conn->rport));
UIP_HTONS(l_conn->lport), UIP_HTONS(l_conn->rport));
#if UIP_CONF_ROUTER
uip_ip6addr(&ipaddr,0x2001,0x630,0x301,0x6453,0x0215,0x2000,0x0002,0x0302);
uip_ip6addr(&ipaddr, 0x2001, 0x630, 0x301, 0x6453, 0x0215, 0x2000, 0x0002,
0x0302);
g_conn = udp_new(&ipaddr, UIP_HTONS(3000), NULL);
if(!g_conn) {
PRINTF("udp_new g_conn error.\n");
@ -192,7 +193,7 @@ PROCESS_THREAD(udp_client_process, ev, data)
PRINTF("Global connection with ");
PRINT6ADDR(&g_conn->ripaddr);
PRINTF(" local/remote port %u/%u\n",
UIP_HTONS(g_conn->lport), UIP_HTONS(g_conn->rport));
UIP_HTONS(g_conn->lport), UIP_HTONS(g_conn->rport));
#endif
etimer_set(&et, SEND_INTERVAL);

View file

@ -101,18 +101,19 @@ ping6handler()
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(ping6_process, ev, data)
{
#if (CONTIKI_TARGET_SENSINODE && BUTTON_SENSOR_ON)
static struct sensors_sensor * btn;
static struct sensors_sensor *btn;
#endif
PROCESS_BEGIN();
PRINTF("ping6 running.\n");
PRINTF("Button 1: 5 pings 16 byte payload.\n");
uip_ip6addr(&dest_addr,0x2001,0x470,0x55,0,0x0215,0x2000,0x0002,0x0302);
uip_ip6addr(&dest_addr, 0x2001, 0x470, 0x55, 0, 0x0215, 0x2000, 0x0002,
0x0302);
count = 0;
/* Check if we have buttons */
#if (CONTIKI_TARGET_SENSINODE && BUTTON_SENSOR_ON)
btn = sensors_find(BUTTON_1_SENSOR);
@ -132,7 +133,7 @@ PROCESS_THREAD(ping6_process, ev, data)
ping6handler();
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/

View file

@ -104,9 +104,10 @@ static void
print_stats()
{
PRINTF("tl=%lu, ts=%lu, bs=%lu, bc=%lu\n",
rimestats.toolong, rimestats.tooshort, rimestats.badsynch, rimestats.badcrc);
PRINTF("llrx=%lu, lltx=%lu, rx=%lu, tx=%lu\n",
rimestats.llrx, rimestats.lltx, rimestats.rx, rimestats.tx);
rimestats.toolong, rimestats.tooshort, rimestats.badsynch,
rimestats.badcrc);
PRINTF("llrx=%lu, lltx=%lu, rx=%lu, tx=%lu\n", rimestats.llrx,
rimestats.lltx, rimestats.rx, rimestats.tx);
}
#else
#define print_stats()
@ -122,11 +123,11 @@ print_local_addresses(void)
for(i = 0; i < UIP_DS6_ADDR_NB; i++) {
state = uip_ds6_if.addr_list[i].state;
if(uip_ds6_if.addr_list[i].isused && (state == ADDR_TENTATIVE || state
== ADDR_PREFERRED)) {
== ADDR_PREFERRED)) {
PRINTF(" ");
PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);
PRINTF("\n");
if (state == ADDR_TENTATIVE) {
if(state == ADDR_TENTATIVE) {
uip_ds6_if.addr_list[i].state = ADDR_PREFERRED;
}
}
@ -145,7 +146,8 @@ create_dag()
print_local_addresses();
dag = rpl_set_root(RPL_DEFAULT_INSTANCE, &uip_ds6_get_global(ADDR_PREFERRED)->ipaddr);
dag = rpl_set_root(RPL_DEFAULT_INSTANCE,
&uip_ds6_get_global(ADDR_PREFERRED)->ipaddr);
if(dag != NULL) {
uip_ip6addr(&ipaddr, 0x2001, 0x630, 0x301, 0x6453, 0, 0, 0, 0);
rpl_set_prefix(dag, &ipaddr, 64);

View file

@ -65,7 +65,7 @@ fade(int l) CC_NON_BANKED
volatile int i, a;
int k, j;
for(k = 0; k < 400; ++k) {
j = k > 200? 400 - k: k;
j = k > 200 ? 400 - k : k;
leds_on(l);
for(i = 0; i < j; ++i) {
@ -84,9 +84,9 @@ set_rime_addr(void) CC_NON_BANKED
char i;
#if CC2530_CONF_MAC_FROM_PRIMARY
__xdata unsigned char * macp = &X_IEEE_ADDR;
__xdata unsigned char *macp = &X_IEEE_ADDR;
#else
__code unsigned char * macp = (__code unsigned char *) 0xFFE8;
__code unsigned char *macp = (__code unsigned char *)0xFFE8;
#endif
PUTSTRING("Rime is 0x");

View file

@ -50,8 +50,7 @@ putdec(uint8_t c)
c %= div;
if((disp != 0) || (hassent) || (div == 1)) {
hassent = 1;
putchar('0'+disp);
putchar('0' + disp);
}
}
}

View file

@ -40,26 +40,26 @@ static CC_AT_DATA struct timer debouncetimer;
/*---------------------------------------------------------------------------*/
/* Button 1 - SmartRF and cc2531 USB Dongle */
/*---------------------------------------------------------------------------*/
static
int value_b1(int type)
static int
value_b1(int type)
{
type;
return BUTTON_READ(1) || !timer_expired(&debouncetimer);
}
/*---------------------------------------------------------------------------*/
static
int status_b1(int type)
static int
status_b1(int type)
{
switch (type) {
switch(type) {
case SENSORS_ACTIVE:
case SENSORS_READY:
return BUTTON_IRQ_ENABLED(1);
}
}
return 0;
}
/*---------------------------------------------------------------------------*/
static
int configure_b1(int type, int value)
static int
configure_b1(int type, int value)
{
switch(type) {
case SENSORS_HW_INIT:
@ -88,26 +88,26 @@ int configure_b1(int type, int value)
/* Button 2 - cc2531 USb Dongle only */
/*---------------------------------------------------------------------------*/
#if MODEL_CC2531
static
int value_b2(int type)
static int
value_b2(int type)
{
type;
return BUTTON_READ(2) || !timer_expired(&debouncetimer);
}
/*---------------------------------------------------------------------------*/
static
int status_b2(int type)
static int
status_b2(int type)
{
switch (type) {
switch(type) {
case SENSORS_ACTIVE:
case SENSORS_READY:
return BUTTON_IRQ_ENABLED(2);
}
}
return 0;
}
/*---------------------------------------------------------------------------*/
static
int configure_b2(int type, int value)
static int
configure_b2(int type, int value)
{
switch(type) {
case SENSORS_HW_INIT:

View file

@ -59,9 +59,9 @@ unsigned char
leds_arch_get(void)
{
#if MODEL_CC2531
return (unsigned char) (LED1_PIN | ((LED2_PIN ^ 0x01) << 1));
return (unsigned char)(LED1_PIN | ((LED2_PIN ^ 0x01) << 1));
#else
return (unsigned char) (LED1_PIN | (LED2_PIN << 1) | (LED3_PIN << 2));
return (unsigned char)(LED1_PIN | (LED2_PIN << 1) | (LED3_PIN << 2));
#endif
}
/*---------------------------------------------------------------------------*/

View file

@ -43,15 +43,15 @@
const struct sensors_sensor *sensors[] = {
#if ADC_SENSOR_ON
&adc_sensor,
&adc_sensor,
#endif
#if BUTTON_SENSOR_ON
&button_1_sensor,
&button_1_sensor,
#if MODEL_CC2531
&button_2_sensor,
&button_2_sensor,
#endif
#endif
0
0
};
unsigned char sensors_flags[(sizeof(sensors) / sizeof(struct sensors_sensor *))];

View file

@ -104,20 +104,20 @@ static uint8_t buffered_data = 0;
#endif
/* Callback to the input handler */
static int (*input_handler)(unsigned char c);
static int (* input_handler)(unsigned char c);
/*---------------------------------------------------------------------------*/
uint8_t *
usb_class_get_string_descriptor(uint16_t lang, uint8_t string)
{
switch (string) {
case 0:
return (uint8_t *) &lang_id;
return (uint8_t *)&lang_id;
case 1:
return (uint8_t *) &string_manufacturer;
return (uint8_t *)&string_manufacturer;
case 2:
return (uint8_t *) &string_product;
return (uint8_t *)&string_product;
case 3:
return (uint8_t *) &string_serial_nr;
return (uint8_t *)&string_serial_nr;
default:
return NULL;
}
@ -271,7 +271,7 @@ PROCESS_THREAD(usb_serial_process, ev, data)
}
/*---------------------------------------------------------------------------*/
void
usb_serial_set_input(int (*input)(unsigned char c))
usb_serial_set_input(int (* input)(unsigned char c))
{
input_handler = input;
}

View file

@ -46,7 +46,7 @@
void usb_serial_init(void);
void usb_serial_writeb(uint8_t);
void usb_serial_set_input(int (*input)(unsigned char c));
void usb_serial_set_input(int (* input)(unsigned char c));
#if USB_SERIAL_CONF_BUFFERED
void usb_serial_flush(void);

View file

@ -41,6 +41,7 @@
#include "contiki.h"
#include "contiki-lib.h"
#include "contiki-net.h"
#include "net/uip-ds6-route.h"
#include <string.h>
@ -68,9 +69,10 @@ static int8_t len;
#define REQUEST_TYPE_TOTALS 0xFF
extern uip_ds6_netif_t uip_ds6_if;
extern uip_ds6_route_t uip_ds6_routing_table[UIP_DS6_ROUTE_NB];
extern uip_ds6_nbr_t uip_ds6_nbr_cache[UIP_DS6_NBR_NB];
extern uip_ds6_defrt_t uip_ds6_defrt_list[UIP_DS6_DEFRT_NB];
static uip_ds6_route_t *rt;
static uip_ds6_defrt_t *defrt;
static uip_ipaddr_t *addr;
/*---------------------------------------------------------------------------*/
static uint8_t
process_request() CC_NON_BANKED
@ -90,7 +92,7 @@ process_request() CC_NON_BANKED
for(i = buf[1]; i < UIP_DS6_NBR_NB; i++) {
if(uip_ds6_nbr_cache[i].isused) {
entry_size = sizeof(i) + sizeof(uip_ipaddr_t) + sizeof(uip_lladdr_t)
+ sizeof(uip_ds6_nbr_cache[i].state);
+ sizeof(uip_ds6_nbr_cache[i].state);
PRINTF("%02u: ", i);
PRINT6ADDR(&uip_ds6_nbr_cache[i].ipaddr);
PRINTF(" - ");
@ -104,7 +106,7 @@ process_request() CC_NON_BANKED
memcpy(buf + len, &uip_ds6_nbr_cache[i].lladdr, sizeof(uip_lladdr_t));
len += sizeof(uip_lladdr_t);
memcpy(buf + len, &uip_ds6_nbr_cache[i].state,
sizeof(uip_ds6_nbr_cache[i].state));
sizeof(uip_ds6_nbr_cache[i].state));
len += sizeof(uip_ds6_nbr_cache[i].state);
count++;
@ -117,85 +119,85 @@ process_request() CC_NON_BANKED
}
} else if(buf[0] == REQUEST_TYPE_RT) {
uint32_t flip = 0;
PRINTF("Routing table\n");
for(i = buf[1]; i < UIP_DS6_ROUTE_NB; i++) {
if(uip_ds6_routing_table[i].isused) {
entry_size = sizeof(i) + sizeof(uip_ds6_routing_table[i].ipaddr)
+ sizeof(uip_ds6_routing_table[i].length)
+ sizeof(uip_ds6_routing_table[i].metric)
+ sizeof(uip_ds6_routing_table[i].nexthop)
+ sizeof(uip_ds6_routing_table[i].state.lifetime)
+ sizeof(uip_ds6_routing_table[i].state.learned_from);
rt = uip_ds6_route_list_head();
for(i = buf[1]; i < uip_ds6_route_num_routes(); i++) {
if(rt != NULL) {
entry_size = sizeof(i) + sizeof(rt->ipaddr)
+ sizeof(rt->length)
+ sizeof(rt->metric)
+ sizeof(rt->nexthop)
+ sizeof(rt->state.lifetime)
+ sizeof(rt->state.learned_from);
memcpy(buf + len, &i, sizeof(i));
len += sizeof(i);
memcpy(buf + len, &uip_ds6_routing_table[i].ipaddr,
sizeof(uip_ds6_routing_table[i].ipaddr));
len += sizeof(uip_ds6_routing_table[i].ipaddr);
memcpy(buf + len, &uip_ds6_routing_table[i].length,
sizeof(uip_ds6_routing_table[i].length));
len += sizeof(uip_ds6_routing_table[i].length);
memcpy(buf + len, &uip_ds6_routing_table[i].metric,
sizeof(uip_ds6_routing_table[i].metric));
len += sizeof(uip_ds6_routing_table[i].metric);
memcpy(buf + len, &uip_ds6_routing_table[i].nexthop,
sizeof(uip_ds6_routing_table[i].nexthop));
len += sizeof(uip_ds6_routing_table[i].nexthop);
memcpy(buf + len, &rt->ipaddr, sizeof(rt->ipaddr));
len += sizeof(rt->ipaddr);
memcpy(buf + len, &rt->length, sizeof(rt->length));
len += sizeof(rt->length);
memcpy(buf + len, &rt->metric, sizeof(rt->metric));
len += sizeof(rt->metric);
memcpy(buf + len, &rt->nexthop, sizeof(rt->nexthop));
len += sizeof(rt->nexthop);
PRINT6ADDR(&uip_ds6_routing_table[i].ipaddr);
PRINTF(" - %02x", uip_ds6_routing_table[i].length);
PRINTF(" - %02x", uip_ds6_routing_table[i].metric);
PRINT6ADDR(&rt->ipaddr);
PRINTF(" - %02x", rt->length);
PRINTF(" - %02x", rt->metric);
PRINTF(" - ");
PRINT6ADDR(&uip_ds6_routing_table[i].nexthop);
PRINT6ADDR(&rt->nexthop);
flip = uip_htonl(uip_ds6_routing_table[i].state.lifetime);
flip = uip_htonl(rt->state.lifetime);
memcpy(buf + len, &flip, sizeof(flip));
len += sizeof(flip);
PRINTF(" - %08lx", uip_ds6_routing_table[i].state.lifetime);
PRINTF(" - %08lx", rt->state.lifetime);
memcpy(buf + len, &uip_ds6_routing_table[i].state.learned_from,
sizeof(uip_ds6_routing_table[i].state.learned_from));
len += sizeof(uip_ds6_routing_table[i].state.learned_from);
memcpy(buf + len, &rt->state.learned_from,
sizeof(rt->state.learned_from));
len += sizeof(rt->state.learned_from);
PRINTF(" - %02x [%u]\n", uip_ds6_routing_table[i].state.learned_from,
entry_size);
PRINTF(" - %02x [%u]\n", rt->state.learned_from, entry_size);
count++;
left -= entry_size;
rt = list_item_next(rt);
if(left < entry_size) {
break;
}
}
}
} else if (buf[0] == REQUEST_TYPE_DRT) {
} else if(buf[0] == REQUEST_TYPE_DRT) {
uint32_t flip = 0;
PRINTF("Default Routes\n");
for(i = buf[1]; i < UIP_DS6_DEFRT_NB; i++) {
if(uip_ds6_defrt_list[i].isused) {
entry_size = sizeof(i) + sizeof(uip_ds6_defrt_list[i].ipaddr)
+ sizeof(uip_ds6_defrt_list[i].isinfinite);
memcpy(buf + len, &i, sizeof(i));
len += sizeof(i);
memcpy(buf + len, &uip_ds6_defrt_list[i].ipaddr,
sizeof(uip_ds6_defrt_list[i].ipaddr));
len += sizeof(uip_ds6_defrt_list[i].ipaddr);
memcpy(buf + len, &uip_ds6_defrt_list[i].isinfinite,
sizeof(uip_ds6_defrt_list[i].isinfinite));
len += sizeof(uip_ds6_defrt_list[i].isinfinite);
PRINT6ADDR(&uip_ds6_defrt_list[i].ipaddr);
PRINTF(" - %u\n", uip_ds6_defrt_list[i].isinfinite);
count++;
left -= entry_size;
if(left < entry_size) {
break;
}
}
PRINTF("Default Route\n");
addr = uip_ds6_defrt_choose();
if(addr != NULL) {
defrt = uip_ds6_defrt_lookup(addr);
}
} else if (buf[0] == REQUEST_TYPE_ADDR) {
i = buf[1];
if(defrt != NULL && i < 1) {
entry_size = sizeof(i) + sizeof(defrt->ipaddr)
+ sizeof(defrt->isinfinite);
memcpy(buf + len, &i, sizeof(i));
len += sizeof(i);
memcpy(buf + len, &defrt->ipaddr, sizeof(defrt->ipaddr));
len += sizeof(defrt->ipaddr);
memcpy(buf + len, &defrt->isinfinite, sizeof(defrt->isinfinite));
len += sizeof(defrt->isinfinite);
PRINT6ADDR(&defrt->ipaddr);
PRINTF(" - %u\n", defrt->isinfinite);
count++;
left -= entry_size;
}
} else if(buf[0] == REQUEST_TYPE_ADDR) {
PRINTF("Unicast Addresses\n");
for(i = buf[1]; i < UIP_DS6_ADDR_NB; i++) {
if(uip_ds6_if.addr_list[i].isused) {
@ -204,7 +206,7 @@ process_request() CC_NON_BANKED
memcpy(buf + len, &i, sizeof(i));
len += sizeof(i);
memcpy(buf + len, &uip_ds6_if.addr_list[i].ipaddr,
sizeof(uip_ds6_if.addr_list[i].ipaddr));
sizeof(uip_ds6_if.addr_list[i].ipaddr));
len += sizeof(uip_ds6_if.addr_list[i].ipaddr);
PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);
@ -217,7 +219,7 @@ process_request() CC_NON_BANKED
}
}
}
} else if (buf[0] == REQUEST_TYPE_TOTALS) {
} else if(buf[0] == REQUEST_TYPE_TOTALS) {
memset(&buf[2], 0, 4);
for(i = 0; i < UIP_DS6_ADDR_NB; i++) {
if(uip_ds6_if.addr_list[i].isused) {
@ -229,16 +231,10 @@ process_request() CC_NON_BANKED
buf[3]++;
}
}
for(i = 0; i < UIP_DS6_ROUTE_NB; i++) {
if(uip_ds6_routing_table[i].isused) {
buf[4]++;
}
}
for(i = 0; i < UIP_DS6_DEFRT_NB; i++) {
if(uip_ds6_defrt_list[i].isused) {
buf[5]++;
}
}
buf[4] = uip_ds6_route_num_routes();
buf[5] = 1;
len += 4;
count = 4;
} else {

View file

@ -91,7 +91,7 @@ struct flash_address {
static struct flash_address f;
static struct record r;
static struct sensors_sensor * s;
static struct sensors_sensor *s;
static struct etimer et;
#define FLASH_START_ADDR 0x1E0000
#define FLASH_END_ADDR 0x1FFFFF
@ -201,7 +201,7 @@ PROCESS_THREAD(batmon_process, ev, data)
PRINTF("BatMon\n", sizeof(r));
s = sensors_find(ADC_SENSOR);
if (!s) {
if(!s) {
PRINTF("BatMon: ADC not found\n");
PROCESS_EXIT();
}

View file

@ -206,7 +206,7 @@
/* ND and Routing */
#ifndef UIP_CONF_ROUTER
#define UIP_CONF_ROUTER 1
#define UIP_CONF_ROUTER 1
#endif
/* Prevent SDCC compile error when UIP_CONF_ROUTER == 0 */

View file

@ -77,7 +77,7 @@ fade(int l) CC_NON_BANKED
volatile int i, a;
int k, j;
for(k = 0; k < 400; ++k) {
j = k > 200? 400 - k: k;
j = k > 200 ? 400 - k : k;
leds_on(l);
for(i = 0; i < j; ++i) {
@ -96,7 +96,7 @@ set_rime_addr(void) CC_NON_BANKED
uint8_t *addr_long = NULL;
uint16_t addr_short = 0;
char i;
__code unsigned char * macp;
__code unsigned char *macp;
PUTSTRING("Rime is 0x");
PUTHEX(sizeof(rimeaddr_t));
@ -119,7 +119,7 @@ set_rime_addr(void) CC_NON_BANKED
FMAP = 3;
/* Set our pointer to the correct address and fetch 8 bytes of MAC */
macp = (__code unsigned char *) 0xFFF8;
macp = (__code unsigned char *)0xFFF8;
for(i = (RIMEADDR_SIZE - 1); i >= 0; --i) {
rimeaddr_node_addr.u8[i] = *macp;
@ -343,7 +343,7 @@ main(void)
nop
__endasm;
if (SLEEP & SLEEP_MODE0) {
if(SLEEP & SLEEP_MODE0) {
#endif /* LPM_MODE==LPM_MODE_PM2 */
ENERGEST_OFF(ENERGEST_TYPE_CPU);

View file

@ -54,7 +54,7 @@ putdec(uint8_t c)
c %= div;
if((disp != 0) || (hassent) || (div == 1)) {
hassent = 1;
putchar('0'+disp);
putchar('0' + disp);
}
}
}

View file

@ -134,8 +134,8 @@ value(int type)
static int
status(int type)
{
return ready;
}
return ready;
}
/*---------------------------------------------------------------------------*/
/*
* On N740 we can control Ill and Acc individually:
@ -203,9 +203,9 @@ configure(int type, int value)
ready |= ADC_VAL_LIGHT_ON;
}
#endif /* LIGHT_SENSOR_ON */
n740_ser_par_set(ser_par_val);
n740_ser_par_set(ser_par_val);
#endif /* MODEL_N740 */
}
}
return ready;
}

View file

@ -59,25 +59,25 @@ HWCONF_PORT_0_IRQ(BUTTON_2, 7)
#endif /* MODEL_N711 */
/*---------------------------------------------------------------------------*/
static
int value_b1(int type)
static int
value_b1(int type)
{
return BUTTON_1_READ() || !timer_expired(&debouncetimer[0]);
}
/*---------------------------------------------------------------------------*/
static
int status_b1(int type)
static int
status_b1(int type)
{
switch (type) {
switch(type) {
case SENSORS_ACTIVE:
case SENSORS_READY:
return BUTTON_1_IRQ_ENABLED();
}
}
return 0;
}
/*---------------------------------------------------------------------------*/
static
int configure_b1(int type, int value)
static int
configure_b1(int type, int value)
{
switch(type) {
case SENSORS_HW_INIT:
@ -92,7 +92,7 @@ int configure_b1(int type, int value)
timer_set(&debouncetimer[0], 0);
BUTTON_1_IRQ_FLAG_OFF();
BUTTON_1_ENABLE_IRQ();
}
}
} else {
BUTTON_1_DISABLE_IRQ();
}
@ -101,16 +101,16 @@ int configure_b1(int type, int value)
return 0;
}
/*---------------------------------------------------------------------------*/
static
int value_b2(int type)
static int
value_b2(int type)
{
return BUTTON_2_READ() || !timer_expired(&debouncetimer[1]);
}
/*---------------------------------------------------------------------------*/
static
int status_b2(int type)
static int
status_b2(int type)
{
switch (type) {
switch(type) {
case SENSORS_ACTIVE:
case SENSORS_READY:
return BUTTON_2_IRQ_ENABLED();
@ -118,8 +118,8 @@ int status_b2(int type)
return 0;
}
/*---------------------------------------------------------------------------*/
static
int configure_b2(int type, int value)
static int
configure_b2(int type, int value)
{
switch(type) {
case SENSORS_HW_INIT:

View file

@ -146,7 +146,7 @@ m25p16_wrdi()
}
/*---------------------------------------------------------------------------*/
void
m25p16_rdid(struct m25p16_rdid * rdid)
m25p16_rdid(struct m25p16_rdid *rdid)
{
uint8_t i;
@ -237,7 +237,7 @@ m25p16_pp(uint8_t * addr, uint8_t * buff, uint8_t buff_len)
}
/* Write the bytes */
for(i=0; i<buff_len; i++) {
for(i = 0; i < buff_len; i++) {
bit_bang_write(~buff[i]);
}
ENERGEST_OFF(ENERGEST_TYPE_FLASH_WRITE);
@ -281,7 +281,8 @@ m25p16_dp()
* Release Deep Power Down. We do NOT read the Electronic Signature
*/
void
m25p16_res() {
m25p16_res()
{
select();
bit_bang_write(M25P16_I_RES);
deselect();
@ -296,7 +297,8 @@ m25p16_res() {
* \return The old style Electronic Signature. This must be 0x14
*/
uint8_t
m25p16_res_res() {
m25p16_res_res()
{
uint8_t rv;
select();

View file

@ -91,11 +91,11 @@
* CFD bytes programmed to 0x00.
*/
struct m25p16_rdid {
uint8_t man_id; /** Manufacturer ID */
uint8_t mem_type; /** Memory Type */
uint8_t mem_size; /** Memory Size */
uint8_t uid_len; /** Unique ID length */
uint8_t uid[16]; /** Unique ID */
uint8_t man_id; /** Manufacturer ID */
uint8_t mem_type; /** Memory Type */
uint8_t mem_size; /** Memory Size */
uint8_t uid_len; /** Unique ID length */
uint8_t uid[16]; /** Unique ID */
};
/*---------------------------------------------------------------------------*/
/**
@ -144,7 +144,7 @@ void m25p16_wrdi();
* \param rdid Pointer to a struct which will hold the information returned
* by the RDID instruction
*/
void m25p16_rdid(struct m25p16_rdid * rdid);
void m25p16_rdid(struct m25p16_rdid *rdid);
/**
* \brief Read Status Register (RDSR) instruction

View file

@ -64,7 +64,7 @@
/* Serial/Parallel Shift Register (74HC595D) Functions */
void n740_ser_par_init(void);
void n740_ser_par_set(uint8_t data) ;
void n740_ser_par_set(uint8_t data);
uint8_t n740_ser_par_get(void);
/* Analog Switch (U5 - 74HC4053D) Functions */

View file

@ -44,13 +44,13 @@
const struct sensors_sensor *sensors[] = {
#if ADC_SENSOR_ON
&adc_sensor,
&adc_sensor,
#endif
#if BUTTON_SENSOR_ON
&button_1_sensor,
&button_2_sensor,
&button_1_sensor,
&button_2_sensor,
#endif
0
0
};
unsigned char sensors_flags[(sizeof(sensors) / sizeof(struct sensors_sensor *))];
@ -61,7 +61,7 @@ sensinode_sensors_activate()
{
struct sensors_sensor *sensor;
sensor = sensors_first();
while (sensor) {
while(sensor) {
sensor->configure(SENSORS_ACTIVE, 1);
sensor = sensors_next(sensor);
}
@ -73,7 +73,7 @@ sensinode_sensors_deactivate()
{
struct sensors_sensor *sensor;
sensor = sensors_first();
while (sensor) {
while(sensor) {
sensor->configure(SENSORS_ACTIVE, 0);
sensor = sensors_next(sensor);
}

View file

@ -76,7 +76,7 @@ void batmon_log(uint8_t trigger);
#endif
/*---------------------------------------------------------------------------*/
static struct uip_udp_conn *server_conn;
static struct disco_request_pdu * req;
static struct disco_request_pdu *req;
static struct disco_response_pdu resp;
static struct disco_seed seed;
static uint8_t state;
@ -92,7 +92,7 @@ extern void *uip_appdata;
__xdata __at(BOOTTY_CMD_LOCATION) static uint8_t bd;
/*---------------------------------------------------------------------------*/
static void timer_handler(void * p);
static void timer_handler(void *p);
/*---------------------------------------------------------------------------*/
static void
abort() CC_NON_BANKED
@ -116,9 +116,9 @@ restart_timer(uint16_t t) CC_NON_BANKED
}
/*---------------------------------------------------------------------------*/
static void
timer_handler(void * p)
timer_handler(void *p)
{
uint8_t * s = p;
uint8_t *s = p;
uint8_t wip;
PRINTF("Disco: @ %lu, s: %u\n", clock_seconds(), *s);
@ -213,7 +213,8 @@ cmd_init() CC_NON_BANKED
static uint8_t
cmd_write() CC_NON_BANKED
{
PRINTF("Disco: Write 0x%02x%02x%02x\n", req->addr[0], req->addr[1], req->addr[2]);
PRINTF("Disco: Write 0x%02x%02x%02x\n", req->addr[0], req->addr[1],
req->addr[2]);
if(uip_datalen() != DISCO_LEN_WRITE) {
resp.status = DISCO_ERR_BAD_LEN;
return DISCO_RESP_LEN_ERR;

View file

@ -41,6 +41,7 @@
#include "contiki.h"
#include "contiki-lib.h"
#include "contiki-net.h"
#include "net/uip-ds6-route.h"
#include <string.h>
@ -68,9 +69,10 @@ static int8_t len;
#define REQUEST_TYPE_TOTALS 0xFF
extern uip_ds6_netif_t uip_ds6_if;
extern uip_ds6_route_t uip_ds6_routing_table[UIP_DS6_ROUTE_NB];
extern uip_ds6_nbr_t uip_ds6_nbr_cache[UIP_DS6_NBR_NB];
extern uip_ds6_defrt_t uip_ds6_defrt_list[UIP_DS6_DEFRT_NB];
static uip_ds6_route_t *rt;
static uip_ds6_defrt_t *defrt;
static uip_ipaddr_t *addr;
/*---------------------------------------------------------------------------*/
static uint8_t
process_request() CC_NON_BANKED
@ -90,7 +92,7 @@ process_request() CC_NON_BANKED
for(i = buf[1]; i < UIP_DS6_NBR_NB; i++) {
if(uip_ds6_nbr_cache[i].isused) {
entry_size = sizeof(i) + sizeof(uip_ipaddr_t) + sizeof(uip_lladdr_t)
+ sizeof(uip_ds6_nbr_cache[i].state);
+ sizeof(uip_ds6_nbr_cache[i].state);
PRINTF("%02u: ", i);
PRINT6ADDR(&uip_ds6_nbr_cache[i].ipaddr);
PRINTF(" - ");
@ -104,7 +106,7 @@ process_request() CC_NON_BANKED
memcpy(buf + len, &uip_ds6_nbr_cache[i].lladdr, sizeof(uip_lladdr_t));
len += sizeof(uip_lladdr_t);
memcpy(buf + len, &uip_ds6_nbr_cache[i].state,
sizeof(uip_ds6_nbr_cache[i].state));
sizeof(uip_ds6_nbr_cache[i].state));
len += sizeof(uip_ds6_nbr_cache[i].state);
count++;
@ -117,85 +119,85 @@ process_request() CC_NON_BANKED
}
} else if(buf[0] == REQUEST_TYPE_RT) {
uint32_t flip = 0;
PRINTF("Routing table\n");
for(i = buf[1]; i < UIP_DS6_ROUTE_NB; i++) {
if(uip_ds6_routing_table[i].isused) {
entry_size = sizeof(i) + sizeof(uip_ds6_routing_table[i].ipaddr)
+ sizeof(uip_ds6_routing_table[i].length)
+ sizeof(uip_ds6_routing_table[i].metric)
+ sizeof(uip_ds6_routing_table[i].nexthop)
+ sizeof(uip_ds6_routing_table[i].state.lifetime)
+ sizeof(uip_ds6_routing_table[i].state.learned_from);
rt = uip_ds6_route_list_head();
for(i = buf[1]; i < uip_ds6_route_num_routes(); i++) {
if(rt != NULL) {
entry_size = sizeof(i) + sizeof(rt->ipaddr)
+ sizeof(rt->length)
+ sizeof(rt->metric)
+ sizeof(rt->nexthop)
+ sizeof(rt->state.lifetime)
+ sizeof(rt->state.learned_from);
memcpy(buf + len, &i, sizeof(i));
len += sizeof(i);
memcpy(buf + len, &uip_ds6_routing_table[i].ipaddr,
sizeof(uip_ds6_routing_table[i].ipaddr));
len += sizeof(uip_ds6_routing_table[i].ipaddr);
memcpy(buf + len, &uip_ds6_routing_table[i].length,
sizeof(uip_ds6_routing_table[i].length));
len += sizeof(uip_ds6_routing_table[i].length);
memcpy(buf + len, &uip_ds6_routing_table[i].metric,
sizeof(uip_ds6_routing_table[i].metric));
len += sizeof(uip_ds6_routing_table[i].metric);
memcpy(buf + len, &uip_ds6_routing_table[i].nexthop,
sizeof(uip_ds6_routing_table[i].nexthop));
len += sizeof(uip_ds6_routing_table[i].nexthop);
memcpy(buf + len, &rt->ipaddr, sizeof(rt->ipaddr));
len += sizeof(rt->ipaddr);
memcpy(buf + len, &rt->length, sizeof(rt->length));
len += sizeof(rt->length);
memcpy(buf + len, &rt->metric, sizeof(rt->metric));
len += sizeof(rt->metric);
memcpy(buf + len, &rt->nexthop, sizeof(rt->nexthop));
len += sizeof(rt->nexthop);
PRINT6ADDR(&uip_ds6_routing_table[i].ipaddr);
PRINTF(" - %02x", uip_ds6_routing_table[i].length);
PRINTF(" - %02x", uip_ds6_routing_table[i].metric);
PRINT6ADDR(&rt->ipaddr);
PRINTF(" - %02x", rt->length);
PRINTF(" - %02x", rt->metric);
PRINTF(" - ");
PRINT6ADDR(&uip_ds6_routing_table[i].nexthop);
PRINT6ADDR(&rt->nexthop);
flip = uip_htonl(uip_ds6_routing_table[i].state.lifetime);
flip = uip_htonl(rt->state.lifetime);
memcpy(buf + len, &flip, sizeof(flip));
len += sizeof(flip);
PRINTF(" - %08lx", uip_ds6_routing_table[i].state.lifetime);
PRINTF(" - %08lx", rt->state.lifetime);
memcpy(buf + len, &uip_ds6_routing_table[i].state.learned_from,
sizeof(uip_ds6_routing_table[i].state.learned_from));
len += sizeof(uip_ds6_routing_table[i].state.learned_from);
memcpy(buf + len, &rt->state.learned_from,
sizeof(rt->state.learned_from));
len += sizeof(rt->state.learned_from);
PRINTF(" - %02x [%u]\n", uip_ds6_routing_table[i].state.learned_from,
entry_size);
PRINTF(" - %02x [%u]\n", rt->state.learned_from, entry_size);
count++;
left -= entry_size;
rt = list_item_next(rt);
if(left < entry_size) {
break;
}
}
}
} else if (buf[0] == REQUEST_TYPE_DRT) {
} else if(buf[0] == REQUEST_TYPE_DRT) {
uint32_t flip = 0;
PRINTF("Default Routes\n");
for(i = buf[1]; i < UIP_DS6_DEFRT_NB; i++) {
if(uip_ds6_defrt_list[i].isused) {
entry_size = sizeof(i) + sizeof(uip_ds6_defrt_list[i].ipaddr)
+ sizeof(uip_ds6_defrt_list[i].isinfinite);
memcpy(buf + len, &i, sizeof(i));
len += sizeof(i);
memcpy(buf + len, &uip_ds6_defrt_list[i].ipaddr,
sizeof(uip_ds6_defrt_list[i].ipaddr));
len += sizeof(uip_ds6_defrt_list[i].ipaddr);
memcpy(buf + len, &uip_ds6_defrt_list[i].isinfinite,
sizeof(uip_ds6_defrt_list[i].isinfinite));
len += sizeof(uip_ds6_defrt_list[i].isinfinite);
PRINT6ADDR(&uip_ds6_defrt_list[i].ipaddr);
PRINTF(" - %u\n", uip_ds6_defrt_list[i].isinfinite);
count++;
left -= entry_size;
if(left < entry_size) {
break;
}
}
PRINTF("Default Route\n");
addr = uip_ds6_defrt_choose();
if(addr != NULL) {
defrt = uip_ds6_defrt_lookup(addr);
}
} else if (buf[0] == REQUEST_TYPE_ADDR) {
i = buf[1];
if(defrt != NULL && i < 1) {
entry_size = sizeof(i) + sizeof(defrt->ipaddr)
+ sizeof(defrt->isinfinite);
memcpy(buf + len, &i, sizeof(i));
len += sizeof(i);
memcpy(buf + len, &defrt->ipaddr, sizeof(defrt->ipaddr));
len += sizeof(defrt->ipaddr);
memcpy(buf + len, &defrt->isinfinite, sizeof(defrt->isinfinite));
len += sizeof(defrt->isinfinite);
PRINT6ADDR(&defrt->ipaddr);
PRINTF(" - %u\n", defrt->isinfinite);
count++;
left -= entry_size;
}
} else if(buf[0] == REQUEST_TYPE_ADDR) {
PRINTF("Unicast Addresses\n");
for(i = buf[1]; i < UIP_DS6_ADDR_NB; i++) {
if(uip_ds6_if.addr_list[i].isused) {
@ -204,7 +206,7 @@ process_request() CC_NON_BANKED
memcpy(buf + len, &i, sizeof(i));
len += sizeof(i);
memcpy(buf + len, &uip_ds6_if.addr_list[i].ipaddr,
sizeof(uip_ds6_if.addr_list[i].ipaddr));
sizeof(uip_ds6_if.addr_list[i].ipaddr));
len += sizeof(uip_ds6_if.addr_list[i].ipaddr);
PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);
@ -217,7 +219,7 @@ process_request() CC_NON_BANKED
}
}
}
} else if (buf[0] == REQUEST_TYPE_TOTALS) {
} else if(buf[0] == REQUEST_TYPE_TOTALS) {
memset(&buf[2], 0, 4);
for(i = 0; i < UIP_DS6_ADDR_NB; i++) {
if(uip_ds6_if.addr_list[i].isused) {
@ -229,16 +231,10 @@ process_request() CC_NON_BANKED
buf[3]++;
}
}
for(i = 0; i < UIP_DS6_ROUTE_NB; i++) {
if(uip_ds6_routing_table[i].isused) {
buf[4]++;
}
}
for(i = 0; i < UIP_DS6_DEFRT_NB; i++) {
if(uip_ds6_defrt_list[i].isused) {
buf[5]++;
}
}
buf[4] = uip_ds6_route_num_routes();
buf[5] = 1;
len += 4;
count = 4;
} else {

View file

@ -13,6 +13,8 @@ hello-world/native \
hello-world/sky \
hello-world/wismote \
hello-world/z1 \
hello-world/sensinode \
hello-world/cc2530dk \
ipv6/rpl-border-router/econotag \
collect/sky \
er-rest-example/sky \
@ -34,7 +36,15 @@ webserver/minimal-net \
webserver-ipv6/sky \
webserver-ipv6/econotag \
wget/minimal-net \
z1/z1
z1/z1 \
sensinode/sensinode \
sensinode/border-router/sensinode \
sensinode/udp-ipv6/sensinode \
sensinode/sniffer/sensinode \
cc2530dk/cc2530dk \
cc2530dk/border-router/cc2530dk \
cc2530dk/udp-ipv6/cc2530dk \
cc2530dk/sniffer/cc2530dk
TOOLS=