initial upload

This commit is contained in:
Harald Pichler 2017-02-01 11:26:50 +01:00
parent 9fb2352b08
commit 6a9b6ae77b
12 changed files with 1724 additions and 0 deletions

View file

@ -0,0 +1,383 @@
// Maxim/Dallas 1-Wire EPROM & EEPROM library for Arduino
// Copyright (C) 2011-2014 Eric Hokanson
// https://github.com/pceric
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
#include "DallasEPROM.h"
/** Supported chips. */
model_type _chip_model_list[] = {
// EPROMs
{ 0x09, "DS2502", 4, true },
{ 0x0B, "DS2505", 64, true },
// EEPROMs
{ 0x14, "DS2430", 1, false },
{ 0x2D, "DS2431", 4, false },
{ 0x23, "DS2433", 16, false },
{ 0, 0, 0, 0 }
};
DallasEPROM::DallasEPROM(OneWire* rWire) {
_wire = rWire;
_progPin = -1;
}
DallasEPROM::DallasEPROM(OneWire* rWire, int progPin) {
_wire = rWire;
_progPin = progPin;
pinMode(progPin, OUTPUT);
digitalWrite(progPin, LOW);
}
/*******************
* Static methods
*******************/
bool DallasEPROM::validAddress(uint8_t* deviceAddress) {
return (OneWire::crc8(deviceAddress, 7) == deviceAddress[7]);
}
bool DallasEPROM::isSupported(uint8_t* deviceAddress) {
int i = 0;
while (_chip_model_list[i].id) {
if (deviceAddress[0] == _chip_model_list[i].id)
return true;
++i;
}
return false;
}
/*******************
* Public methods
*******************/
bool DallasEPROM::search() {
int i;
_curModelIndex = -1;
if (!_wire->reset())
return false;
_wire->reset_search();
while (_wire->search(_addr)) {
i = 0;
while (_chip_model_list[i].id) {
if (_addr[0] == _chip_model_list[i].id) {
_curModelIndex = i;
return true;
}
++i;
}
}
return false;
}
uint8_t* DallasEPROM::getAddress() {
return _addr;
}
void DallasEPROM::setAddress(uint8_t* pAddress) {
int i = 0;
_curModelIndex = -1;
memcpy(_addr, pAddress, 8);
while (_chip_model_list[i].id) {
if (_addr[0] == _chip_model_list[i].id) {
_curModelIndex = i;
return;
}
++i;
}
}
const char* DallasEPROM::getDeviceName() {
if (_curModelIndex >= 0)
return _chip_model_list[_curModelIndex].name;
else
return NULL;
}
bool DallasEPROM::isConnected() {
uint8_t tmpAddress[8];
if (!_wire->reset())
return false;
_wire->reset_search();
while (_wire->search(tmpAddress)) {
if (memcmp(_addr, tmpAddress, 8)==0)
return true;
}
return false;
}
int DallasEPROM::readPage(uint8_t* data, int page) {
unsigned int address = page * 32;
if (!isPageValid(page))
return INVALID_PAGE;
if (!isConnected())
return DEVICE_DISCONNECTED;
// check for page redirection
if (isEPROMDevice()) {
byte command[] = { READSTATUS, (byte)(page+1), 0x00 };
byte new_addr;
_wire->reset();
_wire->select(_addr);
_wire->write(command[0]);
_wire->write(command[1]);
_wire->write(command[2]);
if (OneWire::crc8(command, 3) != _wire->read())
return CRC_MISMATCH;
if ((new_addr = _wire->read()) != 0xFF)
address = new_addr;
}
byte command[] = { READMEMORY, (byte) address, (byte)(address >> 8) };
// send the command and starting address
_wire->reset();
_wire->select(_addr);
_wire->write(command[0]);
_wire->write(command[1]);
_wire->write(command[2]);
// Check CRC on EPROM devices
if (isEPROMDevice() && OneWire::crc8(command, 3) != _wire->read())
return CRC_MISMATCH;
// Read the entire page
for (int i = 0; i < 32; i++) {
data[i] = _wire->read();
}
// TODO: On EPROM device you can check the CRC post read
return 0;
}
int DallasEPROM::writePage(uint8_t* data, int page) {
unsigned int address = page * 32;
if (!isPageValid(page))
return INVALID_PAGE;
if (!isConnected())
return DEVICE_DISCONNECTED;
// EEPROMS have a difference write method than EPROMS
if (!isEPROMDevice()) {
int status;
// a page is 4 8-byte scratch writes
for (int i = 0; i < 32; i += 8) {
if ((status = scratchWrite(&data[i], 8, address + i)))
return status;
}
return 0;
}
byte command[] = { WRITEMEMORY, (byte) address, (byte)(address >> 8),
data[0] };
// send the command, address, and the first byte
_wire->reset();
_wire->select(_addr);
_wire->write(command[0]);
_wire->write(command[1]);
_wire->write(command[2]);
_wire->write(command[3]);
// Check CRC
if (OneWire::crc8(command, 4) != _wire->read())
return CRC_MISMATCH;
// Issue programming pulse for the first byte
if (_progPin >= 0) {
digitalWrite(_progPin, HIGH);
delayMicroseconds(500);
digitalWrite(_progPin, LOW);
}
delayMicroseconds(500);
// Check the first byte for proper burn
if (command[3] != _wire->read())
return COPY_FAILURE;
// write out the rest of the page
for (int i = 1; i < 32; i++) {
// Write byte
_wire->write(data[i]);
// Check CRC
_wire->read(); // FIXME: The EPROM calculates a CRC based on 9 bits, we can't do that with OneWire
//byte crc[] = { (byte)((address+i) & 0x01), data[i] };
//if (OneWire::crc8(crc, 2) != _wire->read())
// return CRC_MISMATCH;
// Issue programming pulse
if (_progPin >= 0) {
digitalWrite(_progPin, HIGH);
delayMicroseconds(500);
digitalWrite(_progPin, LOW);
}
delayMicroseconds(500);
// Check for proper burn
if (data[i] != _wire->read())
return COPY_FAILURE;
}
return 0;
}
int DallasEPROM::lockPage(int page) {
if (!isPageValid(page))
return INVALID_PAGE;
if (!isConnected())
return DEVICE_DISCONNECTED;
_wire->reset();
_wire->select(_addr);
if (isEPROMDevice()) {
byte command[] = { WRITESTATUS, 0x00, 0x00, (1 << page) };
_wire->write(command[0]);
_wire->write(command[1]);
_wire->write(command[2]);
_wire->write(command[3]);
// Check CRC
if (OneWire::crc8(command, 4) != _wire->read())
return CRC_MISMATCH;
// Issue programming pulse
if (_progPin >= 0) {
digitalWrite(_progPin, HIGH);
delayMicroseconds(500);
digitalWrite(_progPin, LOW);
}
delayMicroseconds(500);
// TODO: Verify data
} else {
unsigned int start;
byte data[] = { 0x55 }; // write protect
start = _chip_model_list[_curModelIndex].pages * 32 + page;
scratchWrite(data, 1, start);
}
return 0;
}
bool DallasEPROM::isPageLocked(int page) {
byte status;
if (!isPageValid(page))
return INVALID_PAGE;
if (!isConnected())
return DEVICE_DISCONNECTED;
_wire->reset();
_wire->select(_addr);
if (isEPROMDevice()) {
byte command[] = { READSTATUS, 0x00, 0x00 };
_wire->write(command[0]);
_wire->write(command[1]);
_wire->write(command[2]);
// Check CRC on EPROM devices
if (OneWire::crc8(command, 3) != _wire->read())
return CRC_MISMATCH;
status = _wire->read();
_wire->reset();
return 1 & (status >> page);
} else {
unsigned int start;
start = _chip_model_list[_curModelIndex].pages * 32 + page;
_wire->write(READMEMORY);
_wire->write((byte)start);
_wire->write((byte)(start >> 8));
if (_wire->read() == 0x55)
return true;
else
return false;
}
}
/*******************
* Private methods
*******************/
int DallasEPROM::scratchWrite(uint8_t* data, int length, unsigned int address) {
byte auth[3];
// send the command and address
_wire->reset();
_wire->select(_addr);
_wire->write(WRITEMEMORY);
_wire->write((byte) address);
_wire->write((byte)(address >> 8));
// write "length" bytes to the scratchpad
for (int i = 0; i < length; i++)
_wire->write(data[i]);
// Read the auth code from the scratchpad and verify integrity
_wire->reset();
_wire->select(_addr);
_wire->write(READSTATUS);
_wire->read_bytes(auth, 3);
for (int i = 0; i < length; i++) {
if (_wire->read() != data[i])
return BAD_INTEGRITY;
}
// Issue copy scratchpad with auth bytes
_wire->reset();
_wire->select(_addr);
_wire->write(WRITESTATUS);
_wire->write(auth[0]);
_wire->write(auth[1]);
_wire->write(auth[2], 1);
// Need 10ms prog delay
delay(10);
_wire->depower();
// Check for success
if (_wire->read() != 0xAA)
return COPY_FAILURE;
return 0;
}
bool DallasEPROM::isPageValid(int page) {
if (_curModelIndex >= 0 && page < _chip_model_list[_curModelIndex].pages)
return true;
return false;
}
bool DallasEPROM::isEPROMDevice() {
if (_curModelIndex >= 0 && _chip_model_list[_curModelIndex].isEPROM == true)
return true;
return false;
}
/** @file */

View file

@ -0,0 +1,209 @@
// Maxim/Dallas 1-Wire EPROM & EEPROM library for Arduino
// Copyright (C) 2011-2014 Eric Hokanson
// https://github.com/pceric
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
/** @mainpage Quick Start Guide
*
* @section req_sec Requirements
* Arduino v1.0.0+ and OneWire Library v2.2
*
* @section install_sec Installation
* Extract the DallasEPROM directory into the arduino/libraries directory.
*
* @section usage_sec Usage
* Click <a href="../examples/simple/simple.pde">here</a> to see a
* simple example of how to use this library.
*
* You can also find this example by selecting File->Examples->DallasEPROM
* from the Arduino software menu.
*/
#ifndef DallasEPROM_h
#define DallasEPROM_h
#define DALLASEPROMVERSION "1.2.0"
#include <inttypes.h>
#include <OneWire.h>
// OneWire commands
#define READSTATUS 0xAA // Read the status fields [EPROM] or the Scratchpad [EEPROM]
#define WRITESTATUS 0x55 // Write to the status fields [EPROM] or commit Scratchpad [EEPROM]
#define READMEMORY 0xF0 // Read memory
#define READMEMORYCRC 0xC3 // Read memory w CRC
#define WRITEMEMORY 0x0F // Write to EPROM or the Scratchpad
/**
* @defgroup ERROR_GROUP Returned Error Codes
*
* @{
*/
#define CRC_MISMATCH -1 //!< CRC mismatch
#define INVALID_PAGE -2 //!< Requested page is invalid
#define PAGE_LOCKED -3 //!< Page is currently locked
#define BAD_INTEGRITY -4 //!< Failed scratchpad integrity check
#define COPY_FAILURE -5 //!< Copy scratchpad to memory has failed
#define UNSUPPORTED_DEVICE -64 //!< Chip is unsupported
#define DEVICE_DISCONNECTED -127 //!< Device has disconnected
/** @} */
/**
* Stores our supported chip types.
*
* @param id 1 byte chip id.
* @param name Name/model number of chip.
* @param pages Total number of 32 byte pages supported by chip.
* @param isEPROM Is this device an EPROM and not an EEPROM.
*/
typedef struct {
const uint8_t id;
const char* name;
const int pages;
const bool isEPROM;
} model_type;
/**
* A class that reads and writes to Dallas/Maxim EPROM and EEPROM devices.
*
* @author Eric Hokanson
*/
class DallasEPROM {
public:
/**
* Creates a new DallasEPROM instance using the first EPROM/EEPROM
* device found on the bus.
*
* @param rWire Reference to a OneWire v2.2 instance.
*/
DallasEPROM(OneWire* rWire);
/**
* Creates a new DallasEPROM instance using the first EPROM/EEPROM
* device found on the bus. In addition it will trigger a 500us
* pulse on the provided Arduino pin for EPROM programming.
*
* @param rWire Reference to a OneWire v2.2 instance.
* @param progPin Arduino pin number to pulse if writing EPROMs
*/
DallasEPROM(OneWire* rWire, int progPin);
/**
* Static helper function to check if an address has a valid checksum.
*
* @param pAddress Pointer to an 8 byte 1-Wire address.
* @return True if the address has a valid checksum.
*/
static bool validAddress(uint8_t* pAddress);
/**
* Static helper function to check if the supplied address is from
* a chip that the library supports.
*
* @param pAddress Pointer to an 8 byte 1-Wire address.
* @return True if the chip is supported.
*/
static bool isSupported(uint8_t* pAddress);
/**
* Finds the first supported device on the bus and returns true on success
*/
bool search();
/**
* Gets the device address of the current instance.
*
* @return Pointer to the currently configured address.
*/
uint8_t* getAddress();
/**
* Sets the address of the current instance.
*
* @param pAddress Pointer to an 8 byte 1-Wire address.
*/
void setAddress(uint8_t* pAddress);
/**
* Gets the device name based on the current address.
*
* @return Pointer to the current device string.
*/
const char* getDeviceName();
/**
* Scans the bus and checks if the device is still connected.
*
* @return True if the device is still connected.
*/
bool isConnected();
/**
* Reads a page from the device's memory.
*
* @param pData Pointer to a 32 byte buffer to store the data.
* @param page Page number to read (0-indexed).
* @return 0 on success or @ref ERROR_GROUP.
*/
int readPage(uint8_t* pData, int page);
/**
* Writes a page to the device's memory.
*
* @param pData Pointer to a 32 byte buffer containing the data to store.
* @param page Page number to write (0-indexed).
* @return 0 on success or @ref ERROR_GROUP.
*/
int writePage(uint8_t* pData, int page);
/**
* Lock a page and prevent further writes.
*
* @param page Page to lock (0-indexed).
* @return 0 on success or @ref ERROR_GROUP.
*/
int lockPage(int page);
/**
* Checks to see if a page is locked.
*
* @param page Page to lock (0-indexed).
* @return True if locked.
*/
bool isPageLocked(int page);
private:
OneWire* _wire; // Pointer to OneWire v2.2 instance
uint8_t _addr[8]; // 1-Wire address of memory device stored LSB first
int _progPin; // Arduino pin number to pulse when programming EPROMs
char _curModelIndex; // Currently selected device from device table
/**
* EEPROMs must use a scratch space to write data
*/
int scratchWrite(uint8_t* pdata, int length, unsigned int address);
/**
* Checks to see if the provided page is valid.
*/
bool isPageValid(int page);
/**
* Returns true if the current device is an EPROM and not an EEPROM.
*/
bool isEPROMDevice();
};
#endif
/** @file */

View file

@ -0,0 +1,71 @@
# Set this to the name of your sketch (without extension .pde)
SKETCH=sketch
EXE=arduino-example
all: $(EXE)
CONTIKI=../../..
# Contiki IPv6 configuration
CONTIKI_WITH_IPV6 = 1
CFLAGS += -DPROJECT_CONF_H=\"project-conf.h\"
LFLAGS += -lm
PROJECT_SOURCEFILES += ${SKETCH}.cpp OneWire.cpp DallasEPROM.cpp
# automatically build RESTful resources
REST_RESOURCES_DIR = ./resources
REST_RESOURCES_DIR_COMMON = ../resources-common
REST_RESOURCES_FILES= $(notdir \
$(shell find $(REST_RESOURCES_DIR) -name '*.c') \
$(shell find $(REST_RESOURCES_DIR_COMMON) -name '*.c') \
)
PROJECTDIRS += $(REST_RESOURCES_DIR) $(REST_RESOURCES_DIR_COMMON)
PROJECT_SOURCEFILES += $(REST_RESOURCES_FILES)
# variable for Makefile.include
ifneq ($(TARGET), minimal-net)
CFLAGS += -DUIP_CONF_IPV6_RPL=1
else
# minimal-net does not support RPL under Linux and is mostly used to test CoAP only
${info INFO: compiling without RPL}
CFLAGS += -DUIP_CONF_IPV6_RPL=0
CFLAGS += -DHARD_CODED_ADDRESS=\"fdfd::10\"
${info INFO: compiling with large buffers}
CFLAGS += -DUIP_CONF_BUFFER_SIZE=2048
CFLAGS += -DREST_MAX_CHUNK_SIZE=1024
CFLAGS += -DCOAP_MAX_HEADER_SIZE=640
endif
# linker optimizations
SMALL=1
# REST Engine shall use Erbium CoAP implementation
APPS += er-coap
APPS += rest-engine
APPS += arduino
include $(CONTIKI)/Makefile.include
include $(CONTIKI)/apps/arduino/Makefile.include
$(CONTIKI)/tools/tunslip6: $(CONTIKI)/tools/tunslip6.c
(cd $(CONTIKI)/tools && $(MAKE) tunslip6)
connect-router: $(CONTIKI)/tools/tunslip6
sudo $(CONTIKI)/tools/tunslip6 aaaa::1/64
connect-router-cooja: $(CONTIKI)/tools/tunslip6
sudo $(CONTIKI)/tools/tunslip6 -a 127.0.0.1 aaaa::1/64
connect-minimal:
sudo ip address add fdfd::1/64 dev tap0
avr-size: $(EXE).$(TARGET).sz
flash: $(EXE).$(TARGET).u $(EXE).$(TARGET).eu
.PHONY: flash avr-size
.PRECIOUS: $(EXE).$(TARGET).hex $(EXE).$(TARGET).eep

View file

@ -0,0 +1,563 @@
/*
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
The latest version of this library may be found at:
http://www.pjrc.com/teensy/td_libs_OneWire.html
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
January 2010. At the time, it was in need of many bug fixes, but had
been abandoned the original author (Jim Studt). None of the known
contributors were interested in maintaining OneWire. Paul typically
works on OneWire every 6 to 12 months. Patches usually wait that
long. If anyone is interested in more actively maintaining OneWire,
please contact Paul.
Version 2.3:
Unknonw chip fallback mode, Roger Clark
Teensy-LC compatibility, Paul Stoffregen
Search bug fix, Love Nystrom
Version 2.2:
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
Fix DS18B20 example negative temperature
Fix DS18B20 example's low res modes, Ken Butcher
Improve reset timing, Mark Tillotson
Add const qualifiers, Bertrik Sikken
Add initial value input to crc16, Bertrik Sikken
Add target_search() function, Scott Roberts
Version 2.1:
Arduino 1.0 compatibility, Paul Stoffregen
Improve temperature example, Paul Stoffregen
DS250x_PROM example, Guillermo Lovato
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
Improvements from Glenn Trewitt:
- crc16() now works
- check_crc16() does all of calculation/checking work.
- Added read_bytes() and write_bytes(), to reduce tedious loops.
- Added ds2408 example.
Delete very old, out-of-date readme file (info is here)
Version 2.0: Modifications by Paul Stoffregen, January 2010:
http://www.pjrc.com/teensy/td_libs_OneWire.html
Search fix from Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Use direct optimized I/O in all cases
Disable interrupts during timing critical sections
(this solves many random communication errors)
Disable interrupts during read-modify-write I/O
Reduce RAM consumption by eliminating unnecessary
variables and trimming many to 8 bits
Optimize both crc8 - table version moved to flash
Modified to work with larger numbers of devices - avoids loop.
Tested in Arduino 11 alpha with 12 sensors.
26 Sept 2008 -- Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20
Modified to calculate the 8-bit CRC directly, avoiding the need for
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
-- Tom Pollard, Jan 23, 2008
Jim Studt's original library was modified by Josh Larios.
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains. In any event that was..
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/
#include "OneWire.h"
OneWire::OneWire(uint8_t pin)
{
pinMode(pin, INPUT);
bitmask = PIN_TO_BITMASK(pin);
baseReg = PIN_TO_BASEREG(pin);
#if ONEWIRE_SEARCH
reset_search();
#endif
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset(void)
{
IO_REG_TYPE mask = bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
uint8_t r;
uint8_t retries = 125;
noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !DIRECT_READ(reg, mask));
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
delayMicroseconds(480);
noInterrupts();
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(70);
r = !DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(410);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWire::write_bit(uint8_t v)
{
IO_REG_TYPE mask=bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
if (v & 1) {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(10);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(55);
} else {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(65);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(5);
}
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit(void)
{
IO_REG_TYPE mask=bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
uint8_t r;
noInterrupts();
DIRECT_MODE_OUTPUT(reg, mask);
DIRECT_WRITE_LOW(reg, mask);
delayMicroseconds(3);
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
delayMicroseconds(10);
r = DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(53);
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
for (uint16_t i = 0 ; i < count ; i++)
write(buf[i]);
if (!power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
//
// Read a byte
//
uint8_t OneWire::read() {
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( OneWire::read_bit()) r |= bitMask;
}
return r;
}
void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
for (uint16_t i = 0 ; i < count ; i++)
buf[i] = read();
}
//
// Do a ROM select
//
void OneWire::select(const uint8_t rom[8])
{
uint8_t i;
write(0x55); // Choose ROM
for (i = 0; i < 8; i++) write(rom[i]);
}
//
// Do a ROM skip
//
void OneWire::skip()
{
write(0xCC); // Skip ROM
}
void OneWire::depower()
{
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
interrupts();
}
#if ONEWIRE_SEARCH
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
for(int i = 7; ; i--) {
ROM_NO[i] = 0;
if ( i == 0) break;
}
}
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
//
void OneWire::target_search(uint8_t family_code)
{
// set the search state to find SearchFamily type devices
ROM_NO[0] = family_code;
for (uint8_t i = 1; i < 8; i++)
ROM_NO[i] = 0;
LastDiscrepancy = 64;
LastFamilyDiscrepancy = 0;
LastDeviceFlag = FALSE;
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use OneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
uint8_t OneWire::search(uint8_t *newAddr)
{
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number, search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = 0;
// if the last call was not the last one
if (!LastDeviceFlag)
{
// 1-Wire reset
if (!reset())
{
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
return FALSE;
}
// issue the search command
write(0xF0);
// loop to do the search
do
{
// read a bit and its complement
id_bit = read_bit();
cmp_id_bit = read_bit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1))
break;
else
{
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit)
search_direction = id_bit; // bit write value for search
else
{
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy)
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
else
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
// if 0 was picked then record its position in LastZero
if (search_direction == 0)
{
last_zero = id_bit_number;
// check for Last discrepancy in family
if (last_zero < 9)
LastFamilyDiscrepancy = last_zero;
}
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction == 1)
ROM_NO[rom_byte_number] |= rom_byte_mask;
else
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
write_bit(search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0)
{
rom_byte_number++;
rom_byte_mask = 1;
}
}
}
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65))
{
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0)
LastDeviceFlag = TRUE;
search_result = TRUE;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !ROM_NO[0])
{
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
search_result = FALSE;
} else {
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
}
return search_result;
}
#endif
#if ONEWIRE_CRC
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//
#if ONEWIRE_CRC8_TABLE
// This table comes from Dallas sample code where it is freely reusable,
// though Copyright (C) 2000 Dallas Semiconductor Corporation
static const uint8_t PROGMEM dscrc_table[] = {
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
//
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (note: this might better be done without to
// table, it would probably be smaller and certainly fast enough
// compared to all those delayMicrosecond() calls. But I got
// confused, so I use this table from the examples.)
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
}
return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but much smaller, than the lookup table.
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
#endif
#if ONEWIRE_CRC16
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
{
crc = ~crc16(input, len, crc);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
{
static const uint8_t oddparity[16] =
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
for (uint16_t i = 0 ; i < len ; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ crc) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
return crc;
}
#endif
#endif

View file

@ -0,0 +1,250 @@
#ifndef OneWire_h
#define OneWire_h
#include <inttypes.h>
//#if ARDUINO >= 100
#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc
//#else
//#include "WProgram.h" // for delayMicroseconds
//#include "pins_arduino.h" // for digitalPinToBitMask, etc
//#endif
// You can exclude certain features from OneWire. In theory, this
// might save some space. In practice, the compiler automatically
// removes unused code (technically, the linker, using -fdata-sections
// and -ffunction-sections when compiling, and Wl,--gc-sections
// when linking), so most of these will not result in any code size
// reduction. Well, unless you try to use the missing features
// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
// is the exception, because it selects a fast but large algorithm
// or a small but slow algorithm.
// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif
// You can exclude CRC checks altogether by defining this to 0
#ifndef ONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif
// Select the table-lookup method of computing the 8-bit CRC
// by setting this to 1. The lookup table enlarges code size by
// about 250 bytes. It does NOT consume RAM (but did in very
// old versions of OneWire). If you disable this, a slower
// but very compact algorithm is used.
#ifndef ONEWIRE_CRC8_TABLE
#define ONEWIRE_CRC8_TABLE 1
#endif
// You can allow 16-bit CRC checks by defining this to 1
// (Note that ONEWIRE_CRC must also be 1.)
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 1
#endif
#define FALSE 0
#define TRUE 1
// Platform specific I/O definitions
#if defined(__AVR__)
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM asm("r30")
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (1)
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (*((base)+512))
#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
#elif defined(__MKL26Z64__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) ((*((base)+16) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) (*((base)+20) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+20) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) (*((base)+8) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+4) = (mask))
#elif defined(__SAM3X8E__)
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
// If you have trouble with OneWire on Arduino Due, please check the
// status of delayMicroseconds() before reporting a bug in OneWire!
#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
#ifndef PROGMEM
#define PROGMEM
#endif
#ifndef pgm_read_byte
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
#endif
#elif defined(__PIC32MX__)
#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
#else
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE unsigned int
#define IO_REG_ASM
#define DIRECT_READ(base, pin) digitalRead(pin)
#define DIRECT_WRITE_LOW(base, pin) digitalWrite(pin, LOW)
#define DIRECT_WRITE_HIGH(base, pin) digitalWrite(pin, HIGH)
#define DIRECT_MODE_INPUT(base, pin) pinMode(pin,INPUT)
#define DIRECT_MODE_OUTPUT(base, pin) pinMode(pin,OUTPUT)
#warning "OneWire. Fallback mode. Using API calls for pinMode,digitalRead and digitalWrite. Operation of this library is not guaranteed on this architecture."
#endif
class OneWire
{
private:
IO_REG_TYPE bitmask;
volatile IO_REG_TYPE *baseReg;
#if ONEWIRE_SEARCH
// global search state
unsigned char ROM_NO[8];
uint8_t LastDiscrepancy;
uint8_t LastFamilyDiscrepancy;
uint8_t LastDeviceFlag;
#endif
public:
OneWire( uint8_t pin);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
uint8_t reset(void);
// Issue a 1-Wire rom select command, you do the reset first.
void select(const uint8_t rom[8]);
// Issue a 1-Wire rom skip command, to address all on bus.
void skip(void);
// Write a byte. If 'power' is one then the wire is held high at
// the end for parasitically powered devices. You are responsible
// for eventually depowering it by calling depower() or doing
// another read or write.
void write(uint8_t v, uint8_t power = 0);
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
// Read a byte.
uint8_t read(void);
void read_bytes(uint8_t *buf, uint16_t count);
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void write_bit(uint8_t v);
// Read a bit.
uint8_t read_bit(void);
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather
// not leave this powered if you don't have to, just in case
// someone shorts your bus.
void depower(void);
#if ONEWIRE_SEARCH
// Clear the search state so that if will start from the beginning again.
void reset_search();
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
void target_search(uint8_t family_code);
// Look for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are
// no devices, or you have already retrieved all of them. It
// might be a good idea to check the CRC to make sure you didn't
// get garbage. The order is deterministic. You will always get
// the same devices in the same order.
uint8_t search(uint8_t *newAddr);
#endif
#if ONEWIRE_CRC
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
// ROM and scratchpad registers.
static uint8_t crc8(const uint8_t *addr, uint8_t len);
#if ONEWIRE_CRC16
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return True, iff the CRC matches.
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
#endif
#endif
};
#endif

View file

@ -0,0 +1,24 @@
Arduino compatibility example
=============================
This example shows that it is now possible to re-use arduino sketches in
Contiki. This example documents the necessary magic. Arduino specifies
two routines, `setup` and `loop`. Before `setup` is called, the
framework initializes hardware. In original Arduino, all this is done in
a `main` function (in C). For contiki we define a process that does the
same.
DallasEPROM
===========
Arduino library for Dallas 1-Wire (E)EPROMs
https://github.com/pceric/DallasEPROM
See the documentation file in apps/contiki-compat/README.md
Build and Flash Merkurboard 256
===============================
make clean TARGET=osd-merkur-256 flash

View file

@ -0,0 +1,2 @@
#include <arduino-process.h>
AUTOSTART_PROCESSES(&arduino_sketch);

View file

@ -0,0 +1,2 @@
#!/bin/bash
make TARGET=osd-merkur-128 flash

View file

@ -0,0 +1,106 @@
/*
* Copyright (c) 2010, Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
*/
#ifndef PROJECT_RPL_WEB_CONF_H_
#define PROJECT_RPL_WEB_CONF_H_
#define PLATFORM_HAS_LEDS 1
//#define PLATFORM_HAS_BUTTON 1
#define PLATFORM_HAS_BATTERY 1
#define SICSLOWPAN_CONF_FRAG 1
#define LOOP_INTERVAL (10 * CLOCK_SECOND)
/* Save energy */
//#define RDC_CONF_PT_YIELD_OFF
/* For Debug: Dont allow MCU sleeping between channel checks */
//#undef RDC_CONF_MCU_SLEEP
//#define RDC_CONF_MCU_SLEEP 0
/* Disabling RDC for demo purposes. Core updates often require more memory. */
/* For projects, optimize memory and enable RDC again. */
// #undef NETSTACK_CONF_RDC
//#define NETSTACK_CONF_RDC nullrdc_driver
/* Increase rpl-border-router IP-buffer when using more than 64. */
#undef REST_MAX_CHUNK_SIZE
#define REST_MAX_CHUNK_SIZE 64
/* Estimate your header size, especially when using Proxy-Uri. */
/*
#undef COAP_MAX_HEADER_SIZE
#define COAP_MAX_HEADER_SIZE 70
*/
/* The IP buffer size must fit all other hops, in particular the border router. */
#undef UIP_CONF_BUFFER_SIZE
#define UIP_CONF_BUFFER_SIZE 256
/* Multiplies with chunk size, be aware of memory constraints. */
#undef COAP_MAX_OPEN_TRANSACTIONS
#define COAP_MAX_OPEN_TRANSACTIONS 4
/* Must be <= open transaction number, default is COAP_MAX_OPEN_TRANSACTIONS-1. */
/*
#undef COAP_MAX_OBSERVERS
#define COAP_MAX_OBSERVERS 2
*/
/* Filtering .well-known/core per query can be disabled to save space. */
/*
#undef COAP_LINK_FORMAT_FILTERING
#define COAP_LINK_FORMAT_FILTERING 0
*/
/* Save some memory for the sky platform. */
/*
#undef NBR_TABLE_CONF_MAX_NEIGHBORS
#define NBR_TABLE_CONF_MAX_NEIGHBORS 10
#undef UIP_CONF_MAX_ROUTES
#define UIP_CONF_MAX_ROUTES 10
*/
/* Reduce 802.15.4 frame queue to save RAM. */
/*
#undef QUEUEBUF_CONF_NUM
#define QUEUEBUF_CONF_NUM 4
*/
/*
#undef SICSLOWPAN_CONF_FRAG
#define SICSLOWPAN_CONF_FRAG 1
*/
#endif /* PROJECT_RPL_WEB_CONF_H_ */

View file

@ -0,0 +1,5 @@
#!/bin/bash
# For the ages-old bootloader (before 2014) you want to use
# BOOTLOADER_GET_MAC=0x0001f3a0 as parameter to make below.
make clean TARGET=osd-merkur-128
make TARGET=osd-merkur-128

View file

@ -0,0 +1,10 @@
#ifndef Sketch_h
#define Sketch_h
struct dstemp{
float ftemp;
char stemp[8];
};
extern struct dstemp ds1820[7];
#endif

View file

@ -0,0 +1,99 @@
/*
* Sample arduino sketch using contiki features.
* We turn the LED off
* We allow read the moisture sensor
* Unfortunately sleeping for long times in loop() isn't currently
* possible, something turns off the CPU (including PWM outputs) if a
* Proto-Thread is taking too long. We need to find out how to sleep in
* a Contiki-compatible way.
* Note that for a normal arduino sketch you won't have to include any
* of the contiki-specific files here, the sketch should just work.
*/
#include <OneWire.h>
#include <DallasEPROM.h>
extern "C" {
#include "arduino-process.h"
#include "rest-engine.h"
#include "sketch.h"
extern volatile uint8_t mcusleepcycle; // default 16
// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 3
// Setup a oneWire instance to communicate with any OneWire devices
OneWire oneWire(ONE_WIRE_BUS);
DallasEPROM de(&oneWire);
extern resource_t res_dtemp1, res_dtemp2, res_battery;
#define LED_PIN 4
}
void setup (void)
{
// switch off the led
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, HIGH);
printf("Dallas Eprom Control Library Demo");
Serial1.begin(38400);
// init coap resourcen
rest_init_engine ();
rest_activate_resource (&res_battery, "s/batter");
}
// at project-conf.h
// LOOP_INTERVAL (10 * CLOCK_SECOND)
void loop (void)
{
byte buffer[32]; // Holds one page of data
int status;
mcu_sleep_off();
// Search for the first compatible EPROM/EEPROM on the bus.
// If you have multiple devices you can use de.setAddress()
de.search();
// Print out the 1-wire device's 64-bit address
Serial1.print("Address=");
for(int i = 0; i < 8; i++) {
Serial1.print(de.getAddress()[i], HEX);
Serial1.print(" ");
}
Serial1.println("");
if (de.getAddress()[0] == 0x00) {
Serial1.println("No device was found!");
} else {
if (de.validAddress(de.getAddress())) {
Serial1.println("Address CRC is correct.");
// Uncomment to write to the first page of memory
//strcpy((char*)buffer, "allthingsgeek.com");
//if ((status = de.writePage(buffer, 0)) != 0) {
//sprintf((char*)buffer, "Error writing page! Code: %d", status);
//Serial1.println((char*)buffer);
//}
// Read the first page of memory into buffer
if ((status = de.readPage(buffer, 0)) == 0) {
Serial1.println((char*)buffer);
} else {
sprintf((char*)buffer, "Error reading page! Code: %d", status);
Serial1.println((char*)buffer);
}
} else {
Serial1.println("Address CRC is wrong.");
}
}
Serial1.println("");
mcu_sleep_on();
}