made more conform with contiki indentation.

This commit is contained in:
nvt-se 2008-03-28 23:03:05 +00:00
parent e6cc0105b0
commit 2822ff7ddb
8 changed files with 135 additions and 258 deletions

View file

@ -1,4 +1,3 @@
/*
Copyright 2007, Freie Universitaet Berlin. All rights reserved.
@ -47,9 +46,9 @@ Berlin, 2007
* @brief MMC-/SD-Card library, Public interface
*
* @author Michael Baar <baar@inf.fu-berlin.de>
* @version $Revision: 1.2 $
* @version $Revision: 1.3 $
*
* $Id: sd.h,v 1.2 2008/03/28 15:58:43 nvt-se Exp $
* $Id: sd.h,v 1.3 2008/03/28 23:03:05 nvt-se Exp $
*/
/**
@ -130,28 +129,30 @@ __attribute__ ((packed))
/// Card access library state
#define SD_CACHE_LOCKED 0x01
#define SD_CACHE_DIRTY 0x02
typedef struct {
char buffer[SD_WRITE_BLOCKLENGTH];
uint32_t address;
uint8_t state;
} sd_cache_t;
typedef struct {
uint16_t MinBlockLen_bit:4; ///< minimum supported blocklength
uint16_t MaxBlockLen_bit:4; ///< maximum supported blocklength
uint16_t Flags:8; ///< feature flags
uint8_t BlockLen_bit; ///< currently selected blocklength as bit value (n where BlockLen is 2^n)
uint16_t BlockLen; ///< currently selected blocklength for reading and writing
#if SD_CACHE
sd_cache_t *Cache;
#endif
} sd_state_t;
extern volatile sd_state_t sd_state; ///< Card access library state
typedef struct {
char buffer[SD_WRITE_BLOCKLENGTH];
uint32_t address;
uint8_t state;
} sd_cache_t;
typedef struct {
uint16_t MinBlockLen_bit:4; ///< minimum supported blocklength
uint16_t MaxBlockLen_bit:4; ///< maximum supported blocklength
uint16_t Flags:8; ///< feature flags
uint8_t BlockLen_bit; ///< currently selected blocklength as bit value (n where BlockLen is 2^n)
uint16_t BlockLen; ///< currently selected blocklength for reading and writing
#if SD_CACHE
sd_cache_t *Cache;
#endif
} sd_state_t;
extern volatile sd_state_t sd_state; ///< Card access library state
/**
* @brief Library initialisation
*/
void sd_Init(void);
void sd_init(void);
/**
* @brief Setup ports for sd card communication
@ -167,25 +168,25 @@ __attribute__ ((packed))
/**
* @brief Return value of ::sd_init function
*/
enum sd_init_ret {
SD_INIT_SUCCESS = 0,
SD_INIT_NOCARD = 1,
SD_INIT_FAILED = 2,
SD_INIT_NOTSUPP = 3
};
enum sd_init_ret {
SD_INIT_SUCCESS = 0,
SD_INIT_NOCARD = 1,
SD_INIT_FAILED = 2,
SD_INIT_NOTSUPP = 3
};
/**
* @brief Return value of write functions
* @see ::sd_write, ::sd_write_block
*/
enum sd_write_ret {
SD_WRITE_SUCCESS = 0, ///< writing successfull
SD_WRITE_PROTECTED_ERR = 1, ///< card write protected
SD_WRITE_INTERFACE_ERR = 2, ///< error in UART SPI interface
SD_WRITE_COMMAND_ERR = 3, ///< error in write command or command arguments (e.g. target address)
SD_WRITE_STORE_ERR = 4, ///< storing written data to persistant memory on card failed
SD_WRITE_DMA_ERR = 5
};
enum sd_write_ret {
SD_WRITE_SUCCESS = 0, ///< writing successfull
SD_WRITE_PROTECTED_ERR = 1, ///< card write protected
SD_WRITE_INTERFACE_ERR = 2, ///< error in UART SPI interface
SD_WRITE_COMMAND_ERR = 3, ///< error in write command or command arguments (e.g. target address)
SD_WRITE_STORE_ERR = 4, ///< storing written data to persistant memory on card failed
SD_WRITE_DMA_ERR = 5
};
/**
* @brief Initialize card and state
@ -195,12 +196,12 @@ __attribute__ ((packed))
* functionality. Initializes the global state struct sd_state.
* Should be invoked once immediately after ::sd_setup.
*/
enum sd_init_ret sd_init_card(sd_cache_t * pCache);
enum sd_init_ret sd_init_card(sd_cache_t * pCache);
/**
* @brief Last operation to call when finished with using the card.
*/
void sd_close(void);
void sd_close(void);
/**
* @brief SD Card physically present?
@ -248,7 +249,7 @@ __attribute__ ((packed))
* @param[in,out] pAddress address to align, will be modified to be block aligned
* @return Offset from aligned address to original address
*/
uint16_t sd_AlignAddress(uint32_t * pAddress);
uint16_t sd_AlignAddress(uint32_t * pAddress);
/**
* @brief Read one complete block from a block aligned address into buffer
@ -265,60 +266,58 @@ __attribute__ ((packed))
*
* @return Number of bytes read (should always be = sd_state.BlockLen)
*/
uint16_t sd_read_block(void (*const pBuffer), const uint32_t address);
uint16_t sd_read_block(void (*const pBuffer), const uint32_t address);
#if SD_READ_BYTE
/**
* @brief Read one byte from any address
* This function reads a single byte from any address. It is optimized for best speed
* at any blocklength.
* \Note: blocklength is modified
*
* @param[out] pBuffer Pointer to a buffer to which data is read. It should be least
* 1 byte large
* @param[in] address The address of the byte that shall be read to pBuffer
*
* @return Number of bytes read (usually 1)
*/
bool sd_read_byte(void *pBuffer, const uint32_t address);
/**
* @brief Read one byte from any address
* This function reads a single byte from any address. It is optimized for best speed
* at any blocklength.
* \Note: blocklength is modified
*
* @param[out] pBuffer Pointer to a buffer to which data is read. It should be least
* 1 byte large
* @param[in] address The address of the byte that shall be read to pBuffer
*
* @return Number of bytes read (usually 1)
*/
bool sd_read_byte(void *pBuffer, const uint32_t address);
#endif
#if SD_WRITE
/**
* @brief Write one complete block at a block aligned address from buffer to card
*
* @param[in] address block aligned address to write to
* @param[in] pBuffer pointer to buffer with a block of data to write
* @return result code (see enum #sd_write_ret)
*
* \Note
* Only supported block size for writing is usually 512 bytes.
*/
enum sd_write_ret sd_write_block(const uint32_t address,
void const (*const pBuffer));
/**
* @brief Write one complete block at a block aligned address from buffer to card
*
* @param[in] address block aligned address to write to
* @param[in] pBuffer pointer to buffer with a block of data to write
* @return result code (see enum #sd_write_ret)
*
* \Note
* Only supported block size for writing is usually 512 bytes.
*/
enum sd_write_ret sd_write_block(const uint32_t address,
void const (*const pBuffer));
/**
* @brief Fill one complete block at a block aligned address with
* a single character.
*
* @param[in] address block aligned address to write to
* @param[in] pChar pointer to buffer with a character to write
* @return result code (see enum #sd_write_ret)
*
* @note Use this for settings blocks to 0x00.
* Only supported block size for writing is usually 512 bytes.
*/
enum sd_write_ret sd_set_block(const uint32_t address,
const char (*const pChar));
/**
* @brief Fill one complete block at a block aligned address with
* a single character.
*
* @param[in] address block aligned address to write to
* @param[in] pChar pointer to buffer with a character to write
* @return result code (see enum #sd_write_ret)
*
* @note Use this for settings blocks to 0x00.
* Only supported block size for writing is usually 512 bytes.
*/
enum sd_write_ret sd_set_block(const uint32_t address,
const char (*const pChar));
/**
* @brief Flush the DMA write buffer
*
* Wait for a running DMA write operation to finish
*/
enum sd_write_ret sd_write_flush(void);
/**
* @brief Flush the DMA write buffer
*
* Wait for a running DMA write operation to finish
*/
enum sd_write_ret sd_write_flush(void);
#endif
#if SD_CACHE
@ -326,22 +325,22 @@ __attribute__ ((packed))
#define SD_GET_LOCK(x) do { while( x ->state & SD_CACHE_LOCKED ) { _NOP(); }; x ->state |= SD_CACHE_LOCKED; } while(0)
#define SD_FREE_LOCK(x) do { x ->state &= ~SD_CACHE_LOCKED; } while(0)
/**
* @brief Flush the sd cache
*
* Writes back the cache buffer, if it has been modified. Call this if
* a high level operation has finished and you want to store all data
* persistantly. The write back operation does not use timers.
*/
void sd_cache_flush(void);
/**
* @brief Flush the sd cache
*
* Writes back the cache buffer, if it has been modified. Call this if
* a high level operation has finished and you want to store all data
* persistantly. The write back operation does not use timers.
*/
void sd_cache_flush(void);
/**
* @brief Read a block into the cache buffer
* @internal
*
* You won't usually need this operation.
*/
sd_cache_t *sd_cache_read_block(const uint32_t * blAdr);
/**
* @brief Read a block into the cache buffer
* @internal
*
* You won't usually need this operation.
*/
sd_cache_t *sd_cache_read_block(const uint32_t * blAdr);
#endif
/**
@ -372,15 +371,13 @@ __attribute__ ((packed))
uint32_t sd_get_size(void);
#if SD_READ_ANY
/**
* @brief Read any number of bytes from any address into buffer
*
* @param[out] pBuffer Pointer to a buffer to which data is read. It should be least
* size bytes large
* @param[in] address The address of the first byte that shall be read to pBuffer
* @param[in] size Number of bytes which shall be read starting at address
*/
/**
* @brief Read any number of bytes from any address into buffer
*
* @param[out] pBuffer Pointer to a buffer to which data is read. It should be least
* size bytes large
* @param[in] address The address of the first byte that shall be read to pBuffer
* @param[in] size Number of bytes which shall be read starting at address */
uint16_t sd_read(void *pBuffer, uint32_t address, uint16_t size);
#endif