Improve UART power-cycling logic:

* Only enable TX by default.
* Add some magic for RX handling. When an input handler is registered:
  * Automatically enable RX-related and interrupts
  * Automatically lock the SERIAL PD on under all power modes
  * Automatically enable the UART clock under sleep and deep sleep
  * Automatically undo all of the above when the input handler becomes NULL
  * As a result, modules / examples that need UART RX no longer need to clock the UART and manipulate the SERIAL PD. They simply have to specify an input handler
* Don't automatically power on the UART whenever the CM3 is active
* Before accessing the UART, make sure it is powered and clocked
* Avoid falling edge glitches
* Fix garbage characters / Explicitly wait for UART TX to complete
This commit is contained in:
George Oikonomou 2015-05-01 17:03:26 +01:00
parent 34f52ed08e
commit 07272b7cd6
3 changed files with 271 additions and 95 deletions

View file

@ -40,6 +40,7 @@
#include "sys/energest.h"
#include <stdint.h>
#include <stdbool.h>
/*---------------------------------------------------------------------------*/
/* Which events to trigger a UART interrupt */
#define CC26XX_UART_RX_INTERRUPT_TRIGGERS (UART_INT_RX | UART_INT_RT)
@ -53,35 +54,98 @@
/*---------------------------------------------------------------------------*/
static int (*input_handler)(unsigned char c);
/*---------------------------------------------------------------------------*/
static void
power_domain_on(void)
static bool
usable(void)
{
if(BOARD_IOID_UART_RX == IOID_UNUSED ||
BOARD_IOID_UART_TX == IOID_UNUSED ||
CC26XX_UART_CONF_ENABLE == 0) {
return false;
}
return true;
}
/*---------------------------------------------------------------------------*/
static void
power_and_clock(void)
{
/* Power on the SERIAL PD */
ti_lib_prcm_power_domain_on(PRCM_DOMAIN_SERIAL);
while(ti_lib_prcm_power_domain_status(PRCM_DOMAIN_SERIAL)
!= PRCM_DOMAIN_POWER_ON);
/* Enable UART clock in active mode */
ti_lib_prcm_peripheral_run_enable(PRCM_PERIPH_UART0);
ti_lib_prcm_load_set();
while(!ti_lib_prcm_load_get());
}
/*---------------------------------------------------------------------------*/
/*
* Returns 0 if either the SERIAL PD is off, or the PD is on but the run mode
* clock is gated. If this function would return 0, accessing UART registers
* will return a precise bus fault. If this function returns 1, it is safe to
* access UART registers.
*
* This function only checks the 'run mode' clock gate, since it can only ever
* be called with the MCU in run mode.
*/
static bool
accessible(void)
{
/* First, check the PD */
if(ti_lib_prcm_power_domain_status(PRCM_DOMAIN_SERIAL)
!= PRCM_DOMAIN_POWER_ON) {
return false;
}
/* Then check the 'run mode' clock gate */
if(!(HWREG(PRCM_BASE + PRCM_O_UARTCLKGR) & PRCM_UARTCLKGR_CLK_EN)) {
return false;
}
return true;
}
/*---------------------------------------------------------------------------*/
static void
configure_baud_rate(void)
disable_interrupts(void)
{
/* Acknowledge UART interrupts */
ti_lib_int_disable(INT_UART0);
/* Disable all UART module interrupts */
ti_lib_uart_int_disable(UART0_BASE, CC26XX_UART_INTERRUPT_ALL);
/* Clear all UART interrupts */
ti_lib_uart_int_clear(UART0_BASE, CC26XX_UART_INTERRUPT_ALL);
}
/*---------------------------------------------------------------------------*/
static void
enable_interrupts(void)
{
/* Clear all UART interrupts */
ti_lib_uart_int_clear(UART0_BASE, CC26XX_UART_INTERRUPT_ALL);
/* Enable RX-related interrupts only if we have an input handler */
if(input_handler) {
/* Configure which interrupts to generate: FIFO level or after RX timeout */
ti_lib_uart_int_enable(UART0_BASE, CC26XX_UART_RX_INTERRUPT_TRIGGERS);
/* Acknowledge UART interrupts */
ti_lib_int_enable(INT_UART0);
}
}
/*---------------------------------------------------------------------------*/
static void
configure(void)
{
uint32_t ctl_val = UART_CTL_UARTEN | UART_CTL_TXE;
/*
* Configure the UART for 115,200, 8-N-1 operation.
* This function uses SysCtrlClockGet() to get the system clock
* frequency. This could be also be a variable or hard coded value
* instead of a function call.
* Make sure the TX pin is output / high before assigning it to UART control
* to avoid falling edge glitches
*/
ti_lib_uart_config_set_exp_clk(UART0_BASE,
ti_lib_sys_ctrl_peripheral_clock_get(
PRCM_PERIPH_UART0,
SYSCTRL_SYSBUS_ON),
CC26XX_UART_CONF_BAUD_RATE,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));
}
/*---------------------------------------------------------------------------*/
static void
configure_registers(void)
{
ti_lib_ioc_pin_type_gpio_output(BOARD_IOID_UART_TX);
ti_lib_gpio_pin_write(BOARD_UART_TX, 1);
/*
* Map UART signals to the correct GPIO pins and configure them as
* hardware controlled.
@ -89,7 +153,14 @@ configure_registers(void)
ti_lib_ioc_pin_type_uart(UART0_BASE, BOARD_IOID_UART_RX, BOARD_IOID_UART_TX,
BOARD_IOID_UART_CTS, BOARD_IOID_UART_RTS);
configure_baud_rate();
/* Configure the UART for 115,200, 8-N-1 operation. */
ti_lib_uart_config_set_exp_clk(UART0_BASE,
ti_lib_sys_ctrl_peripheral_clock_get(
PRCM_PERIPH_UART0,
SYSCTRL_SYSBUS_ON),
CC26XX_UART_CONF_BAUD_RATE,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));
/*
* Generate an RX interrupt at FIFO 1/2 full.
@ -97,116 +168,138 @@ configure_registers(void)
*/
ti_lib_uart_fifo_level_set(UART0_BASE, UART_FIFO_TX7_8, UART_FIFO_RX4_8);
/* Configure which interrupts to generate: FIFO level or after RX timeout */
ti_lib_uart_int_enable(UART0_BASE, CC26XX_UART_RX_INTERRUPT_TRIGGERS);
}
/*---------------------------------------------------------------------------*/
static void
uart_on(void)
{
power_domain_on();
/* Enable FIFOs */
HWREG(UART0_BASE + UART_O_LCRH) |= UART_LCRH_FEN;
/* Configure baud rate and enable */
if((HWREG(UART0_BASE + UART_O_CTL) & UART_CTL_UARTEN) == 0) {
configure_registers();
/* Enable UART */
ti_lib_uart_enable(UART0_BASE);
if(input_handler) {
ctl_val += UART_CTL_RXE;
}
}
/*---------------------------------------------------------------------------*/
static uint8_t
lpm_permit_max_pm_handler(void)
{
return LPM_MODE_MAX_SUPPORTED;
/* Enable TX, RX (conditionally), and the UART. */
HWREG(UART0_BASE + UART_O_CTL) = ctl_val;
}
/*---------------------------------------------------------------------------*/
static void
lpm_drop_handler(uint8_t mode)
{
/* Do nothing if the PD is off */
if(ti_lib_prcm_power_domain_status(PRCM_DOMAIN_SERIAL)
!= PRCM_DOMAIN_POWER_ON) {
return;
/*
* First, wait for any outstanding TX to complete. If we have an input
* handler, the SERIAL PD will be kept on and the UART module clock will
* be enabled under sleep as well as deep sleep. In theory, this means that
* we shouldn't lose any outgoing bytes, but we actually do on occasion.
* This byte loss may (or may not) be related to the freezing of IO latches
* between MCU and AON when we drop to deep sleep. This here is essentially a
* workaround
*/
if(accessible() == true) {
while(ti_lib_uart_busy(UART0_BASE));
}
/* Wait for outstanding TX to complete */
while(ti_lib_uart_busy(UART0_BASE));
/*
* Check our clock gate under Deep Sleep. If it's off, we can shut down. If
* it's on, this means that some other code module wants UART functionality
* during deep sleep, so we stay enabled
* If we have a registered input_handler then we need to retain RX
* capability. Thus, if this is not a shutdown notification and we have an
* input handler, we do nothing
*/
if((HWREG(PRCM_BASE + PRCM_O_UARTCLKGDS) & 1) == 0) {
ti_lib_ioc_pin_type_gpio_input(BOARD_IOID_UART_RX);
ti_lib_ioc_pin_type_gpio_input(BOARD_IOID_UART_TX);
ti_lib_uart_disable(UART0_BASE);
}
}
/*---------------------------------------------------------------------------*/
static void
lpm_wakeup_handler(void)
{
uart_on();
}
/*---------------------------------------------------------------------------*/
/* Declare a data structure to register with LPM. */
LPM_MODULE(uart_module, lpm_permit_max_pm_handler,
lpm_drop_handler, lpm_wakeup_handler);
/*---------------------------------------------------------------------------*/
void
cc26xx_uart_init()
{
/* Exit without initialising if ports are misconfigured */
if(BOARD_IOID_UART_RX == IOID_UNUSED ||
BOARD_IOID_UART_TX == IOID_UNUSED) {
if((mode != LPM_MODE_SHUTDOWN) && (input_handler != NULL)) {
return;
}
/* Enable the serial domain and wait for domain to be on */
power_domain_on();
/*
* If we reach here, we either don't care about staying awake or we have
* received a shutdown notification
*
* Only touch UART registers if the module is powered and clocked
*/
if(accessible() == true) {
/* Disable the module */
ti_lib_uart_disable(UART0_BASE);
/* Enable the UART clock when running and sleeping */
ti_lib_prcm_peripheral_run_enable(PRCM_PERIPH_UART0);
/* Disable all UART interrupts and clear all flags */
disable_interrupts();
}
/* Apply clock settings and wait for them to take effect */
/*
* Always stop the clock in run mode. Also stop in Sleep and Deep Sleep if
* this is a request for full shutdown
*/
ti_lib_prcm_peripheral_run_disable(PRCM_PERIPH_UART0);
if(mode == LPM_MODE_SHUTDOWN) {
ti_lib_prcm_peripheral_sleep_disable(PRCM_PERIPH_UART0);
ti_lib_prcm_peripheral_deep_sleep_disable(PRCM_PERIPH_UART0);
}
ti_lib_prcm_load_set();
while(!ti_lib_prcm_load_get());
/* Disable Interrupts */
ti_lib_int_master_disable();
/* Set pins to low leakage configuration in preparation for deep sleep */
lpm_pin_set_default_state(BOARD_IOID_UART_TX);
lpm_pin_set_default_state(BOARD_IOID_UART_RX);
lpm_pin_set_default_state(BOARD_IOID_UART_CTS);
lpm_pin_set_default_state(BOARD_IOID_UART_RTS);
}
/*---------------------------------------------------------------------------*/
/* Declare a data structure to register with LPM. */
LPM_MODULE(uart_module, NULL, lpm_drop_handler, NULL, LPM_DOMAIN_NONE);
/*---------------------------------------------------------------------------*/
static void
enable(void)
{
power_and_clock();
/* Make sure the peripheral is disabled */
ti_lib_uart_disable(UART0_BASE);
/* Disable all UART module interrupts */
ti_lib_uart_int_disable(UART0_BASE, CC26XX_UART_INTERRUPT_ALL);
/* Disable all UART interrupts and clear all flags */
disable_interrupts();
configure_registers();
/* Setup pins, Baud rate and FIFO levels */
configure();
/* Acknowledge UART interrupts */
ti_lib_int_enable(INT_UART0);
/* Enable UART interrupts */
enable_interrupts();
}
/*---------------------------------------------------------------------------*/
void
cc26xx_uart_init()
{
bool interrupts_disabled;
/* Re-enable processor interrupts */
ti_lib_int_master_enable();
/* Return early if disabled by user conf or if ports are misconfigured */
if(usable() == false) {
return;
}
/* Enable UART */
ti_lib_uart_enable(UART0_BASE);
/* Disable Interrupts */
interrupts_disabled = ti_lib_int_master_disable();
/* Register ourselves with the LPM module */
lpm_register_module(&uart_module);
/* Only TX and EN to start with. RX will be enabled only if needed */
input_handler = NULL;
/*
* init() won't actually fire up the UART. We turn it on only when (and if)
* it gets requested, either to enable input or to send out a character
*
* Thus, we simply re-enable processor interrupts here
*/
if(!interrupts_disabled) {
ti_lib_int_master_enable();
}
}
/*---------------------------------------------------------------------------*/
void
cc26xx_uart_write_byte(uint8_t c)
{
if(ti_lib_prcm_power_domain_status(PRCM_DOMAIN_SERIAL)
!= PRCM_DOMAIN_POWER_ON) {
/* Return early if disabled by user conf or if ports are misconfigured */
if(usable() == false) {
return;
}
if(accessible() == false) {
enable();
}
ti_lib_uart_char_put(UART0_BASE, c);
}
/*---------------------------------------------------------------------------*/
@ -214,9 +307,52 @@ void
cc26xx_uart_set_input(int (*input)(unsigned char c))
{
input_handler = input;
/* Return early if disabled by user conf or if ports are misconfigured */
if(usable() == false) {
return;
}
if(input == NULL) {
/* Let the SERIAL PD power down */
uart_module.domain_lock = LPM_DOMAIN_NONE;
/* Disable module clocks under sleep and deep sleep */
ti_lib_prcm_peripheral_sleep_disable(PRCM_PERIPH_UART0);
ti_lib_prcm_peripheral_deep_sleep_disable(PRCM_PERIPH_UART0);
} else {
/* Request the SERIAL PD to stay on during deep sleep */
uart_module.domain_lock = LPM_DOMAIN_SERIAL;
/* Enable module clocks under sleep and deep sleep */
ti_lib_prcm_peripheral_sleep_enable(PRCM_PERIPH_UART0);
ti_lib_prcm_peripheral_deep_sleep_enable(PRCM_PERIPH_UART0);
}
ti_lib_prcm_load_set();
while(!ti_lib_prcm_load_get());
enable();
return;
}
/*---------------------------------------------------------------------------*/
uint8_t
cc26xx_uart_busy(void)
{
/* Return early if disabled by user conf or if ports are misconfigured */
if(usable() == false) {
return UART_IDLE;
}
/* If the UART is not accessible, it is not busy */
if(accessible() == false) {
return UART_IDLE;
}
return ti_lib_uart_busy(UART0_BASE);
}
/*---------------------------------------------------------------------------*/
void
cc26xx_uart_isr(void)
{
@ -225,6 +361,8 @@ cc26xx_uart_isr(void)
ENERGEST_ON(ENERGEST_TYPE_IRQ);
power_and_clock();
/* Read out the masked interrupt status */
flags = ti_lib_uart_int_status(UART0_BASE, true);

View file

@ -63,9 +63,32 @@ void cc26xx_uart_write_byte(uint8_t b);
/**
* \brief Assigns a callback to be called when the UART receives a byte
* \param input A pointer to the function
*
* If \e input is NULL, the UART driver will assume that RX functionality is
* not required and it will be disabled. It will also disable the module's
* clocks under sleep and deep sleep and allow the SERIAL PD to be powered off.
*
* If \e input is not NULL, the UART driver will assume that RX is in fact
* required and it will be enabled. The module's clocks will be enabled under
* sleep and deep sleep and the driver will not allow the SERIAL PD to turn
* off during deep sleep, so that the UART can still receive bytes.
*
* \note This has a significant impact on overall energy consumption, so you
* should only enabled UART RX input when it's actually required.
*/
void cc26xx_uart_set_input(int (*input)(unsigned char c));
/**
* \brief Returns the UART busy status
* \return UART_IDLE or UART_BUSY
*
* ti_lib_uart_busy() will access UART registers. It is our responsibility
* to first make sure the UART is accessible before calling it. Hence this
* wrapper.
*
* Return values are defined in CC26xxware's uart.h
*/
uint8_t cc26xx_uart_busy(void);
/** @} */
/*---------------------------------------------------------------------------*/
#endif /* CC26XX_UART_H_ */

View file

@ -29,6 +29,7 @@
*/
/*---------------------------------------------------------------------------*/
#include "cc26xx-uart.h"
#include "ti-lib.h"
#include <string.h>
/*---------------------------------------------------------------------------*/
@ -47,9 +48,16 @@ puts(const char *str)
return 0;
}
for(i = 0; i < strlen(str); i++) {
putchar(str[i]);
cc26xx_uart_write_byte(str[i]);
}
putchar('\n');
cc26xx_uart_write_byte('\n');
/*
* Wait for the line to go out. This is to prevent garbage when used between
* UART on/off cycles
*/
while(cc26xx_uart_busy() == UART_BUSY);
return i;
}
/*---------------------------------------------------------------------------*/
@ -62,9 +70,16 @@ dbg_send_bytes(const unsigned char *s, unsigned int len)
if(i >= len) {
break;
}
putchar(*s++);
cc26xx_uart_write_byte(*s++);
i++;
}
/*
* Wait for the buffer to go out. This is to prevent garbage when used
* between UART on/off cycles
*/
while(cc26xx_uart_busy() == UART_BUSY);
return i;
}
/*---------------------------------------------------------------------------*/