Improve OPT sensor driver and usage

* Query the sensor about its state, rather than using variables in the driver
* Correctly put the sensor to deep sleep
* Fix doxygen comments
* Don't turn off the sensor in examples since it is no longer needed
This commit is contained in:
George Oikonomou 2015-05-01 16:03:48 +01:00
parent 3ab1b836c4
commit 00a6c31158
4 changed files with 105 additions and 51 deletions

View file

@ -251,8 +251,7 @@ get_light_reading()
printf("OPT: Light Read Error\n");
}
SENSORS_DEACTIVATE(opt_3001_sensor);
/* The OPT will turn itself off, so we don't need to call its DEACTIVATE */
ctimer_set(&opt_timer, next, init_opt_reading, NULL);
}
/*---------------------------------------------------------------------------*/

View file

@ -574,8 +574,6 @@ get_light_reading()
value = opt_3001_sensor.value(0);
SENSORS_DEACTIVATE(opt_3001_sensor);
if(value != CC26XX_SENSOR_READING_ERROR) {
opt_reading.raw = value;
@ -587,6 +585,7 @@ get_light_reading()
value % 100);
}
/* The OPT will turn itself off, so we don't need to call its DEACTIVATE */
ctimer_set(&opt_timer, next, init_light_reading, NULL);
}
/*---------------------------------------------------------------------------*/

View file

@ -69,16 +69,42 @@
#define REG_MANUFACTURER_ID 0x7E
#define REG_DEVICE_ID 0x7F
/*---------------------------------------------------------------------------*/
/* Register values */
#define MANUFACTURER_ID 0x5449 /* TI */
#define DEVICE_ID 0x3001 /* Opt 3001 */
#define CONFIG_RESET 0xC810
#define CONFIG_TEST 0xCC10
#define CONFIG_ENABLE 0x10CC /* 0xCC10 */
#define CONFIG_DISABLE 0x108C /* 0xC810 */
/*---------------------------------------------------------------------------*/
/* Bit values */
#define DATA_RDY_BIT 0x0080 /* Data ready */
/*
* Configuration Register Bits and Masks.
* We use uint16_t to read from / write to registers, meaning that the
* register's MSB is the variable's LSB.
*/
#define CONFIG_RN 0x00F0 /* [15..12] Range Number */
#define CONFIG_CT 0x0008 /* [11] Conversion Time */
#define CONFIG_M 0x0006 /* [10..9] Mode of Conversion */
#define CONFIG_OVF 0x0001 /* [8] Overflow */
#define CONFIG_CRF 0x8000 /* [7] Conversion Ready Field */
#define CONFIG_FH 0x4000 /* [6] Flag High */
#define CONFIG_FL 0x2000 /* [5] Flag Low */
#define CONFIG_L 0x1000 /* [4] Latch */
#define CONFIG_POL 0x0800 /* [3] Polarity */
#define CONFIG_ME 0x0400 /* [2] Mask Exponent */
#define CONFIG_FC 0x0300 /* [1..0] Fault Count */
/* Possible Values for CT */
#define CONFIG_CT_100 0x0000
#define CONFIG_CT_800 CONFIG_CT
/* Possible Values for M */
#define CONFIG_M_CONTI 0x0004
#define CONFIG_M_SINGLE 0x0002
#define CONFIG_M_SHUTDOWN 0x0000
/* Reset Value for the register 0xC810. All zeros except: */
#define CONFIG_RN_RESET 0x00C0
#define CONFIG_CT_RESET CONFIG_CT_800
#define CONFIG_L_RESET 0x1000
#define CONFIG_DEFAULTS (CONFIG_RN_RESET | CONFIG_CT_100 | CONFIG_L_RESET)
/* Enable / Disable */
#define CONFIG_ENABLE_CONTINUOUS (CONFIG_M_CONTI | CONFIG_DEFAULTS)
#define CONFIG_ENABLE_SINGLE_SHOT (CONFIG_M_SINGLE | CONFIG_DEFAULTS)
#define CONFIG_DISABLE CONFIG_DEFAULTS
/*---------------------------------------------------------------------------*/
/* Register length */
#define REGISTER_LENGTH 2
@ -86,24 +112,22 @@
/* Sensor data size */
#define DATA_LENGTH 2
/*---------------------------------------------------------------------------*/
#define SENSOR_STATUS_DISABLED 0
#define SENSOR_STATUS_NOT_READY 1
#define SENSOR_STATUS_ENABLED 2
/*
* SENSOR_STATE_SLEEPING and SENSOR_STATE_ACTIVE are mutually exclusive.
* SENSOR_STATE_DATA_READY can be ORd with both of the above. For example the
* sensor may be sleeping but with a conversion ready to read out.
*/
#define SENSOR_STATE_SLEEPING 0
#define SENSOR_STATE_ACTIVE 1
#define SENSOR_STATE_DATA_READY 2
static int enabled = SENSOR_STATUS_DISABLED;
static int state = SENSOR_STATE_SLEEPING;
/*---------------------------------------------------------------------------*/
/* Wait SENSOR_STARTUP_DELAY for the sensor to be ready - 125ms */
#define SENSOR_STARTUP_DELAY (CLOCK_SECOND >> 3)
static struct ctimer startup_timer;
/*---------------------------------------------------------------------------*/
static void
notify_ready(void *not_used)
{
enabled = SENSOR_STATUS_ENABLED;
sensors_changed(&opt_3001_sensor);
}
/*---------------------------------------------------------------------------*/
/**
* \brief Select the sensor on the I2C bus
*/
@ -114,6 +138,28 @@ select(void)
board_i2c_select(BOARD_I2C_INTERFACE_0, OPT3001_I2C_ADDRESS);
}
/*---------------------------------------------------------------------------*/
static void
notify_ready(void *not_used)
{
/*
* Depending on the CONFIGURATION.CONVERSION_TIME bits, a conversion will
* take either 100 or 800 ms. Here we inspect the CONVERSION_READY bit and
* if the reading is ready we notify, otherwise we just reschedule ourselves
*/
uint16_t val;
select();
sensor_common_read_reg(REG_CONFIGURATION, (uint8_t *)&val, REGISTER_LENGTH);
if(val & CONFIG_CRF) {
sensors_changed(&opt_3001_sensor);
state = SENSOR_STATE_DATA_READY;
} else {
ctimer_set(&startup_timer, SENSOR_STARTUP_DELAY, notify_ready, NULL);
}
}
/*---------------------------------------------------------------------------*/
/**
* \brief Turn the sensor on/off
* \param enable TRUE: on, FALSE: off
@ -122,13 +168,20 @@ static void
enable_sensor(bool enable)
{
uint16_t val;
uint16_t had_data_ready = state & SENSOR_STATE_DATA_READY;
select();
if(enable) {
val = CONFIG_ENABLE;
val = CONFIG_ENABLE_SINGLE_SHOT;
/* Writing CONFIG_ENABLE_SINGLE_SHOT to M bits will clear CRF bits */
state = SENSOR_STATE_ACTIVE;
} else {
val = CONFIG_DISABLE;
/* Writing CONFIG_DISABLE to M bits will not clear CRF bits */
state = SENSOR_STATE_SLEEPING | had_data_ready;
}
sensor_common_write_reg(REG_CONFIGURATION, (uint8_t *)&val, REGISTER_LENGTH);
@ -145,15 +198,15 @@ read_data(uint16_t *raw_data)
bool success;
uint16_t val;
if((state & SENSOR_STATE_DATA_READY) != SENSOR_STATE_DATA_READY) {
return false;
}
select();
success = sensor_common_read_reg(REG_CONFIGURATION, (uint8_t *)&val,
REGISTER_LENGTH);
if(success) {
success = (val & DATA_RDY_BIT) == DATA_RDY_BIT;
}
if(success) {
success = sensor_common_read_reg(REG_RESULT, (uint8_t *)&val, DATA_LENGTH);
}
@ -196,14 +249,9 @@ value(int type)
uint16_t raw_val;
float converted_val;
if(enabled != SENSOR_STATUS_ENABLED) {
PRINTF("Sensor disabled or starting up (%d)\n", enabled);
return CC26XX_SENSOR_READING_ERROR;
}
rv = read_data(&raw_val);
if(rv == 0) {
if(rv == false) {
return CC26XX_SENSOR_READING_ERROR;
}
@ -229,30 +277,38 @@ value(int type)
static int
configure(int type, int enable)
{
int rv = 0;
switch(type) {
case SENSORS_HW_INIT:
/*
* Device reset won't reset the sensor, so we put it to sleep here
* explicitly
*/
enable_sensor(0);
rv = 0;
break;
case SENSORS_ACTIVE:
if(enable) {
enable_sensor(1);
ctimer_set(&startup_timer, SENSOR_STARTUP_DELAY, notify_ready, NULL);
enabled = SENSOR_STATUS_NOT_READY;
rv = 1;
} else {
ctimer_stop(&startup_timer);
enable_sensor(0);
enabled = SENSOR_STATUS_DISABLED;
rv = 0;
}
break;
default:
break;
}
return enabled;
return rv;
}
/*---------------------------------------------------------------------------*/
/**
* \brief Returns the status of the sensor
* \param type SENSORS_ACTIVE or SENSORS_READY
* \return 1 if the sensor is enabled
* \param type ignored
* \return The state of the sensor SENSOR_STATE_xyz
*/
static int
status(int type)
@ -260,12 +316,10 @@ status(int type)
switch(type) {
case SENSORS_ACTIVE:
case SENSORS_READY:
return enabled;
break;
default:
break;
}
return SENSOR_STATUS_DISABLED;
return state;
}
/*---------------------------------------------------------------------------*/
SENSORS_SENSOR(opt_3001_sensor, "OPT3001", value, configure, status);

View file

@ -40,14 +40,16 @@
* sequence, but the call will not wait for it to complete so that the CPU can
* perform other tasks or drop to a low power mode.
*
* Once the sensor is stable, the driver will generate a sensors_changed event.
* Once the reading and conversion are complete, the driver will generate a
* sensors_changed event.
*
* Once a reading has been taken, the caller has two options:
* - Turn the sensor off by calling SENSORS_DEACTIVATE, but in order to take
* subsequent readings SENSORS_ACTIVATE must be called again
* - Leave the sensor on. In this scenario, the caller can simply keep calling
* value() for subsequent readings, but having the sensor on will consume
* energy
* We use single-shot readings. In this mode, the hardware automatically goes
* back to its shutdown mode after the conversion is finished. However, it will
* still respond to I2C operations, so the last conversion can still be read
* out.
*
* In order to take a new reading, the caller has to use SENSORS_ACTIVATE
* again.
* @{
*
* \file