1349 lines
42 KiB
C++
1349 lines
42 KiB
C++
|
/*
|
||
|
This is the core graphics library for all our displays, providing a common
|
||
|
set of graphics primitives (points, lines, circles, etc.). It needs to be
|
||
|
paired with a hardware-specific library for each display device we carry
|
||
|
(to handle the lower-level functions).
|
||
|
|
||
|
Adafruit invests time and resources providing this open source code, please
|
||
|
support Adafruit & open-source hardware by purchasing products from Adafruit!
|
||
|
|
||
|
Copyright (c) 2013 Adafruit Industries. All rights reserved.
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions are met:
|
||
|
|
||
|
- Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
- Redistributions in binary form must reproduce the above copyright notice,
|
||
|
this list of conditions and the following disclaimer in the documentation
|
||
|
and/or other materials provided with the distribution.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include "Adafruit_GFX.h"
|
||
|
#include "glcdfont.c"
|
||
|
#ifdef __AVR__
|
||
|
#include <avr/pgmspace.h>
|
||
|
#elif defined(ESP8266) || defined(ESP32)
|
||
|
#include <pgmspace.h>
|
||
|
#endif
|
||
|
|
||
|
// Many (but maybe not all) non-AVR board installs define macros
|
||
|
// for compatibility with existing PROGMEM-reading AVR code.
|
||
|
// Do our own checks and defines here for good measure...
|
||
|
|
||
|
#ifndef pgm_read_byte
|
||
|
#define pgm_read_byte(addr) (*(const unsigned char *)(addr))
|
||
|
#endif
|
||
|
#ifndef pgm_read_word
|
||
|
#define pgm_read_word(addr) (*(const unsigned short *)(addr))
|
||
|
#endif
|
||
|
#ifndef pgm_read_dword
|
||
|
#define pgm_read_dword(addr) (*(const unsigned long *)(addr))
|
||
|
#endif
|
||
|
|
||
|
// Pointers are a peculiar case...typically 16-bit on AVR boards,
|
||
|
// 32 bits elsewhere. Try to accommodate both...
|
||
|
|
||
|
#if !defined(__INT_MAX__) || (__INT_MAX__ > 0xFFFF)
|
||
|
#define pgm_read_pointer(addr) ((void *)pgm_read_dword(addr))
|
||
|
#else
|
||
|
#define pgm_read_pointer(addr) ((void *)pgm_read_word(addr))
|
||
|
#endif
|
||
|
|
||
|
#ifndef min
|
||
|
#define min(a,b) (((a) < (b)) ? (a) : (b))
|
||
|
#endif
|
||
|
|
||
|
#ifndef _swap_int16_t
|
||
|
#define _swap_int16_t(a, b) { int16_t t = a; a = b; b = t; }
|
||
|
#endif
|
||
|
|
||
|
Adafruit_GFX::Adafruit_GFX(int16_t w, int16_t h):
|
||
|
WIDTH(w), HEIGHT(h)
|
||
|
{
|
||
|
_width = WIDTH;
|
||
|
_height = HEIGHT;
|
||
|
rotation = 0;
|
||
|
cursor_y = cursor_x = 0;
|
||
|
textsize = 1;
|
||
|
textcolor = textbgcolor = 0xFFFF;
|
||
|
wrap = true;
|
||
|
_cp437 = false;
|
||
|
gfxFont = NULL;
|
||
|
}
|
||
|
|
||
|
// Bresenham's algorithm - thx wikpedia
|
||
|
void Adafruit_GFX::writeLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1,
|
||
|
uint16_t color) {
|
||
|
int16_t steep = abs(y1 - y0) > abs(x1 - x0);
|
||
|
if (steep) {
|
||
|
_swap_int16_t(x0, y0);
|
||
|
_swap_int16_t(x1, y1);
|
||
|
}
|
||
|
|
||
|
if (x0 > x1) {
|
||
|
_swap_int16_t(x0, x1);
|
||
|
_swap_int16_t(y0, y1);
|
||
|
}
|
||
|
|
||
|
int16_t dx, dy;
|
||
|
dx = x1 - x0;
|
||
|
dy = abs(y1 - y0);
|
||
|
|
||
|
int16_t err = dx / 2;
|
||
|
int16_t ystep;
|
||
|
|
||
|
if (y0 < y1) {
|
||
|
ystep = 1;
|
||
|
} else {
|
||
|
ystep = -1;
|
||
|
}
|
||
|
|
||
|
for (; x0<=x1; x0++) {
|
||
|
if (steep) {
|
||
|
writePixel(y0, x0, color);
|
||
|
} else {
|
||
|
writePixel(x0, y0, color);
|
||
|
}
|
||
|
err -= dy;
|
||
|
if (err < 0) {
|
||
|
y0 += ystep;
|
||
|
err += dx;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::startWrite(){
|
||
|
// Overwrite in subclasses if desired!
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::writePixel(int16_t x, int16_t y, uint16_t color){
|
||
|
// Overwrite in subclasses if startWrite is defined!
|
||
|
drawPixel(x, y, color);
|
||
|
}
|
||
|
|
||
|
// (x,y) is topmost point; if unsure, calling function
|
||
|
// should sort endpoints or call writeLine() instead
|
||
|
void Adafruit_GFX::writeFastVLine(int16_t x, int16_t y,
|
||
|
int16_t h, uint16_t color) {
|
||
|
// Overwrite in subclasses if startWrite is defined!
|
||
|
// Can be just writeLine(x, y, x, y+h-1, color);
|
||
|
// or writeFillRect(x, y, 1, h, color);
|
||
|
drawFastVLine(x, y, h, color);
|
||
|
}
|
||
|
|
||
|
// (x,y) is leftmost point; if unsure, calling function
|
||
|
// should sort endpoints or call writeLine() instead
|
||
|
void Adafruit_GFX::writeFastHLine(int16_t x, int16_t y,
|
||
|
int16_t w, uint16_t color) {
|
||
|
// Overwrite in subclasses if startWrite is defined!
|
||
|
// Example: writeLine(x, y, x+w-1, y, color);
|
||
|
// or writeFillRect(x, y, w, 1, color);
|
||
|
drawFastHLine(x, y, w, color);
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::writeFillRect(int16_t x, int16_t y, int16_t w, int16_t h,
|
||
|
uint16_t color) {
|
||
|
// Overwrite in subclasses if desired!
|
||
|
fillRect(x,y,w,h,color);
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::endWrite(){
|
||
|
// Overwrite in subclasses if startWrite is defined!
|
||
|
}
|
||
|
|
||
|
// (x,y) is topmost point; if unsure, calling function
|
||
|
// should sort endpoints or call drawLine() instead
|
||
|
void Adafruit_GFX::drawFastVLine(int16_t x, int16_t y,
|
||
|
int16_t h, uint16_t color) {
|
||
|
// Update in subclasses if desired!
|
||
|
startWrite();
|
||
|
writeLine(x, y, x, y+h-1, color);
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// (x,y) is leftmost point; if unsure, calling function
|
||
|
// should sort endpoints or call drawLine() instead
|
||
|
void Adafruit_GFX::drawFastHLine(int16_t x, int16_t y,
|
||
|
int16_t w, uint16_t color) {
|
||
|
// Update in subclasses if desired!
|
||
|
startWrite();
|
||
|
writeLine(x, y, x+w-1, y, color);
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
|
||
|
uint16_t color) {
|
||
|
// Update in subclasses if desired!
|
||
|
startWrite();
|
||
|
for (int16_t i=x; i<x+w; i++) {
|
||
|
writeFastVLine(i, y, h, color);
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::fillScreen(uint16_t color) {
|
||
|
// Update in subclasses if desired!
|
||
|
fillRect(0, 0, _width, _height, color);
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1,
|
||
|
uint16_t color) {
|
||
|
// Update in subclasses if desired!
|
||
|
if(x0 == x1){
|
||
|
if(y0 > y1) _swap_int16_t(y0, y1);
|
||
|
drawFastVLine(x0, y0, y1 - y0 + 1, color);
|
||
|
} else if(y0 == y1){
|
||
|
if(x0 > x1) _swap_int16_t(x0, x1);
|
||
|
drawFastHLine(x0, y0, x1 - x0 + 1, color);
|
||
|
} else {
|
||
|
startWrite();
|
||
|
writeLine(x0, y0, x1, y1, color);
|
||
|
endWrite();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Draw a circle outline
|
||
|
void Adafruit_GFX::drawCircle(int16_t x0, int16_t y0, int16_t r,
|
||
|
uint16_t color) {
|
||
|
int16_t f = 1 - r;
|
||
|
int16_t ddF_x = 1;
|
||
|
int16_t ddF_y = -2 * r;
|
||
|
int16_t x = 0;
|
||
|
int16_t y = r;
|
||
|
|
||
|
startWrite();
|
||
|
writePixel(x0 , y0+r, color);
|
||
|
writePixel(x0 , y0-r, color);
|
||
|
writePixel(x0+r, y0 , color);
|
||
|
writePixel(x0-r, y0 , color);
|
||
|
|
||
|
while (x<y) {
|
||
|
if (f >= 0) {
|
||
|
y--;
|
||
|
ddF_y += 2;
|
||
|
f += ddF_y;
|
||
|
}
|
||
|
x++;
|
||
|
ddF_x += 2;
|
||
|
f += ddF_x;
|
||
|
|
||
|
writePixel(x0 + x, y0 + y, color);
|
||
|
writePixel(x0 - x, y0 + y, color);
|
||
|
writePixel(x0 + x, y0 - y, color);
|
||
|
writePixel(x0 - x, y0 - y, color);
|
||
|
writePixel(x0 + y, y0 + x, color);
|
||
|
writePixel(x0 - y, y0 + x, color);
|
||
|
writePixel(x0 + y, y0 - x, color);
|
||
|
writePixel(x0 - y, y0 - x, color);
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::drawCircleHelper( int16_t x0, int16_t y0,
|
||
|
int16_t r, uint8_t cornername, uint16_t color) {
|
||
|
int16_t f = 1 - r;
|
||
|
int16_t ddF_x = 1;
|
||
|
int16_t ddF_y = -2 * r;
|
||
|
int16_t x = 0;
|
||
|
int16_t y = r;
|
||
|
|
||
|
while (x<y) {
|
||
|
if (f >= 0) {
|
||
|
y--;
|
||
|
ddF_y += 2;
|
||
|
f += ddF_y;
|
||
|
}
|
||
|
x++;
|
||
|
ddF_x += 2;
|
||
|
f += ddF_x;
|
||
|
if (cornername & 0x4) {
|
||
|
writePixel(x0 + x, y0 + y, color);
|
||
|
writePixel(x0 + y, y0 + x, color);
|
||
|
}
|
||
|
if (cornername & 0x2) {
|
||
|
writePixel(x0 + x, y0 - y, color);
|
||
|
writePixel(x0 + y, y0 - x, color);
|
||
|
}
|
||
|
if (cornername & 0x8) {
|
||
|
writePixel(x0 - y, y0 + x, color);
|
||
|
writePixel(x0 - x, y0 + y, color);
|
||
|
}
|
||
|
if (cornername & 0x1) {
|
||
|
writePixel(x0 - y, y0 - x, color);
|
||
|
writePixel(x0 - x, y0 - y, color);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::fillCircle(int16_t x0, int16_t y0, int16_t r,
|
||
|
uint16_t color) {
|
||
|
startWrite();
|
||
|
writeFastVLine(x0, y0-r, 2*r+1, color);
|
||
|
fillCircleHelper(x0, y0, r, 3, 0, color);
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Used to do circles and roundrects
|
||
|
void Adafruit_GFX::fillCircleHelper(int16_t x0, int16_t y0, int16_t r,
|
||
|
uint8_t cornername, int16_t delta, uint16_t color) {
|
||
|
|
||
|
int16_t f = 1 - r;
|
||
|
int16_t ddF_x = 1;
|
||
|
int16_t ddF_y = -2 * r;
|
||
|
int16_t x = 0;
|
||
|
int16_t y = r;
|
||
|
|
||
|
while (x<y) {
|
||
|
if (f >= 0) {
|
||
|
y--;
|
||
|
ddF_y += 2;
|
||
|
f += ddF_y;
|
||
|
}
|
||
|
x++;
|
||
|
ddF_x += 2;
|
||
|
f += ddF_x;
|
||
|
|
||
|
if (cornername & 0x1) {
|
||
|
writeFastVLine(x0+x, y0-y, 2*y+1+delta, color);
|
||
|
writeFastVLine(x0+y, y0-x, 2*x+1+delta, color);
|
||
|
}
|
||
|
if (cornername & 0x2) {
|
||
|
writeFastVLine(x0-x, y0-y, 2*y+1+delta, color);
|
||
|
writeFastVLine(x0-y, y0-x, 2*x+1+delta, color);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Draw a rectangle
|
||
|
void Adafruit_GFX::drawRect(int16_t x, int16_t y, int16_t w, int16_t h,
|
||
|
uint16_t color) {
|
||
|
startWrite();
|
||
|
writeFastHLine(x, y, w, color);
|
||
|
writeFastHLine(x, y+h-1, w, color);
|
||
|
writeFastVLine(x, y, h, color);
|
||
|
writeFastVLine(x+w-1, y, h, color);
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a rounded rectangle
|
||
|
void Adafruit_GFX::drawRoundRect(int16_t x, int16_t y, int16_t w,
|
||
|
int16_t h, int16_t r, uint16_t color) {
|
||
|
// smarter version
|
||
|
startWrite();
|
||
|
writeFastHLine(x+r , y , w-2*r, color); // Top
|
||
|
writeFastHLine(x+r , y+h-1, w-2*r, color); // Bottom
|
||
|
writeFastVLine(x , y+r , h-2*r, color); // Left
|
||
|
writeFastVLine(x+w-1, y+r , h-2*r, color); // Right
|
||
|
// draw four corners
|
||
|
drawCircleHelper(x+r , y+r , r, 1, color);
|
||
|
drawCircleHelper(x+w-r-1, y+r , r, 2, color);
|
||
|
drawCircleHelper(x+w-r-1, y+h-r-1, r, 4, color);
|
||
|
drawCircleHelper(x+r , y+h-r-1, r, 8, color);
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Fill a rounded rectangle
|
||
|
void Adafruit_GFX::fillRoundRect(int16_t x, int16_t y, int16_t w,
|
||
|
int16_t h, int16_t r, uint16_t color) {
|
||
|
// smarter version
|
||
|
startWrite();
|
||
|
writeFillRect(x+r, y, w-2*r, h, color);
|
||
|
|
||
|
// draw four corners
|
||
|
fillCircleHelper(x+w-r-1, y+r, r, 1, h-2*r-1, color);
|
||
|
fillCircleHelper(x+r , y+r, r, 2, h-2*r-1, color);
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a triangle
|
||
|
void Adafruit_GFX::drawTriangle(int16_t x0, int16_t y0,
|
||
|
int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint16_t color) {
|
||
|
drawLine(x0, y0, x1, y1, color);
|
||
|
drawLine(x1, y1, x2, y2, color);
|
||
|
drawLine(x2, y2, x0, y0, color);
|
||
|
}
|
||
|
|
||
|
// Fill a triangle
|
||
|
void Adafruit_GFX::fillTriangle(int16_t x0, int16_t y0,
|
||
|
int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint16_t color) {
|
||
|
|
||
|
int16_t a, b, y, last;
|
||
|
|
||
|
// Sort coordinates by Y order (y2 >= y1 >= y0)
|
||
|
if (y0 > y1) {
|
||
|
_swap_int16_t(y0, y1); _swap_int16_t(x0, x1);
|
||
|
}
|
||
|
if (y1 > y2) {
|
||
|
_swap_int16_t(y2, y1); _swap_int16_t(x2, x1);
|
||
|
}
|
||
|
if (y0 > y1) {
|
||
|
_swap_int16_t(y0, y1); _swap_int16_t(x0, x1);
|
||
|
}
|
||
|
|
||
|
startWrite();
|
||
|
if(y0 == y2) { // Handle awkward all-on-same-line case as its own thing
|
||
|
a = b = x0;
|
||
|
if(x1 < a) a = x1;
|
||
|
else if(x1 > b) b = x1;
|
||
|
if(x2 < a) a = x2;
|
||
|
else if(x2 > b) b = x2;
|
||
|
writeFastHLine(a, y0, b-a+1, color);
|
||
|
endWrite();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int16_t
|
||
|
dx01 = x1 - x0,
|
||
|
dy01 = y1 - y0,
|
||
|
dx02 = x2 - x0,
|
||
|
dy02 = y2 - y0,
|
||
|
dx12 = x2 - x1,
|
||
|
dy12 = y2 - y1;
|
||
|
int32_t
|
||
|
sa = 0,
|
||
|
sb = 0;
|
||
|
|
||
|
// For upper part of triangle, find scanline crossings for segments
|
||
|
// 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1
|
||
|
// is included here (and second loop will be skipped, avoiding a /0
|
||
|
// error there), otherwise scanline y1 is skipped here and handled
|
||
|
// in the second loop...which also avoids a /0 error here if y0=y1
|
||
|
// (flat-topped triangle).
|
||
|
if(y1 == y2) last = y1; // Include y1 scanline
|
||
|
else last = y1-1; // Skip it
|
||
|
|
||
|
for(y=y0; y<=last; y++) {
|
||
|
a = x0 + sa / dy01;
|
||
|
b = x0 + sb / dy02;
|
||
|
sa += dx01;
|
||
|
sb += dx02;
|
||
|
/* longhand:
|
||
|
a = x0 + (x1 - x0) * (y - y0) / (y1 - y0);
|
||
|
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
|
||
|
*/
|
||
|
if(a > b) _swap_int16_t(a,b);
|
||
|
writeFastHLine(a, y, b-a+1, color);
|
||
|
}
|
||
|
|
||
|
// For lower part of triangle, find scanline crossings for segments
|
||
|
// 0-2 and 1-2. This loop is skipped if y1=y2.
|
||
|
sa = dx12 * (y - y1);
|
||
|
sb = dx02 * (y - y0);
|
||
|
for(; y<=y2; y++) {
|
||
|
a = x1 + sa / dy12;
|
||
|
b = x0 + sb / dy02;
|
||
|
sa += dx12;
|
||
|
sb += dx02;
|
||
|
/* longhand:
|
||
|
a = x1 + (x2 - x1) * (y - y1) / (y2 - y1);
|
||
|
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
|
||
|
*/
|
||
|
if(a > b) _swap_int16_t(a,b);
|
||
|
writeFastHLine(a, y, b-a+1, color);
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// BITMAP / XBITMAP / GRAYSCALE / RGB BITMAP FUNCTIONS ---------------------
|
||
|
|
||
|
// Draw a PROGMEM-resident 1-bit image at the specified (x,y) position,
|
||
|
// using the specified foreground color (unset bits are transparent).
|
||
|
void Adafruit_GFX::drawBitmap(int16_t x, int16_t y,
|
||
|
const uint8_t bitmap[], int16_t w, int16_t h, uint16_t color) {
|
||
|
|
||
|
int16_t byteWidth = (w + 7) / 8; // Bitmap scanline pad = whole byte
|
||
|
uint8_t byte = 0;
|
||
|
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++) {
|
||
|
if(i & 7) byte <<= 1;
|
||
|
else byte = pgm_read_byte(&bitmap[j * byteWidth + i / 8]);
|
||
|
if(byte & 0x80) writePixel(x+i, y, color);
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a PROGMEM-resident 1-bit image at the specified (x,y) position,
|
||
|
// using the specified foreground (for set bits) and background (unset
|
||
|
// bits) colors.
|
||
|
void Adafruit_GFX::drawBitmap(int16_t x, int16_t y,
|
||
|
const uint8_t bitmap[], int16_t w, int16_t h,
|
||
|
uint16_t color, uint16_t bg) {
|
||
|
|
||
|
int16_t byteWidth = (w + 7) / 8; // Bitmap scanline pad = whole byte
|
||
|
uint8_t byte = 0;
|
||
|
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
if(i & 7) byte <<= 1;
|
||
|
else byte = pgm_read_byte(&bitmap[j * byteWidth + i / 8]);
|
||
|
writePixel(x+i, y, (byte & 0x80) ? color : bg);
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a RAM-resident 1-bit image at the specified (x,y) position,
|
||
|
// using the specified foreground color (unset bits are transparent).
|
||
|
void Adafruit_GFX::drawBitmap(int16_t x, int16_t y,
|
||
|
uint8_t *bitmap, int16_t w, int16_t h, uint16_t color) {
|
||
|
|
||
|
int16_t byteWidth = (w + 7) / 8; // Bitmap scanline pad = whole byte
|
||
|
uint8_t byte = 0;
|
||
|
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
if(i & 7) byte <<= 1;
|
||
|
else byte = bitmap[j * byteWidth + i / 8];
|
||
|
if(byte & 0x80) writePixel(x+i, y, color);
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a RAM-resident 1-bit image at the specified (x,y) position,
|
||
|
// using the specified foreground (for set bits) and background (unset
|
||
|
// bits) colors.
|
||
|
void Adafruit_GFX::drawBitmap(int16_t x, int16_t y,
|
||
|
uint8_t *bitmap, int16_t w, int16_t h, uint16_t color, uint16_t bg) {
|
||
|
|
||
|
int16_t byteWidth = (w + 7) / 8; // Bitmap scanline pad = whole byte
|
||
|
uint8_t byte = 0;
|
||
|
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
if(i & 7) byte <<= 1;
|
||
|
else byte = bitmap[j * byteWidth + i / 8];
|
||
|
writePixel(x+i, y, (byte & 0x80) ? color : bg);
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw PROGMEM-resident XBitMap Files (*.xbm), exported from GIMP,
|
||
|
// Usage: Export from GIMP to *.xbm, rename *.xbm to *.c and open in editor.
|
||
|
// C Array can be directly used with this function.
|
||
|
// There is no RAM-resident version of this function; if generating bitmaps
|
||
|
// in RAM, use the format defined by drawBitmap() and call that instead.
|
||
|
void Adafruit_GFX::drawXBitmap(int16_t x, int16_t y,
|
||
|
const uint8_t bitmap[], int16_t w, int16_t h, uint16_t color) {
|
||
|
|
||
|
int16_t byteWidth = (w + 7) / 8; // Bitmap scanline pad = whole byte
|
||
|
uint8_t byte = 0;
|
||
|
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
if(i & 7) byte >>= 1;
|
||
|
else byte = pgm_read_byte(&bitmap[j * byteWidth + i / 8]);
|
||
|
// Nearly identical to drawBitmap(), only the bit order
|
||
|
// is reversed here (left-to-right = LSB to MSB):
|
||
|
if(byte & 0x01) writePixel(x+i, y, color);
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a PROGMEM-resident 8-bit image (grayscale) at the specified (x,y)
|
||
|
// pos. Specifically for 8-bit display devices such as IS31FL3731;
|
||
|
// no color reduction/expansion is performed.
|
||
|
void Adafruit_GFX::drawGrayscaleBitmap(int16_t x, int16_t y,
|
||
|
const uint8_t bitmap[], int16_t w, int16_t h) {
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
writePixel(x+i, y, (uint8_t)pgm_read_byte(&bitmap[j * w + i]));
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a RAM-resident 8-bit image (grayscale) at the specified (x,y)
|
||
|
// pos. Specifically for 8-bit display devices such as IS31FL3731;
|
||
|
// no color reduction/expansion is performed.
|
||
|
void Adafruit_GFX::drawGrayscaleBitmap(int16_t x, int16_t y,
|
||
|
uint8_t *bitmap, int16_t w, int16_t h) {
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
writePixel(x+i, y, bitmap[j * w + i]);
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a PROGMEM-resident 8-bit image (grayscale) with a 1-bit mask
|
||
|
// (set bits = opaque, unset bits = clear) at the specified (x,y) position.
|
||
|
// BOTH buffers (grayscale and mask) must be PROGMEM-resident.
|
||
|
// Specifically for 8-bit display devices such as IS31FL3731;
|
||
|
// no color reduction/expansion is performed.
|
||
|
void Adafruit_GFX::drawGrayscaleBitmap(int16_t x, int16_t y,
|
||
|
const uint8_t bitmap[], const uint8_t mask[],
|
||
|
int16_t w, int16_t h) {
|
||
|
int16_t bw = (w + 7) / 8; // Bitmask scanline pad = whole byte
|
||
|
uint8_t byte = 0;
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
if(i & 7) byte <<= 1;
|
||
|
else byte = pgm_read_byte(&mask[j * bw + i / 8]);
|
||
|
if(byte & 0x80) {
|
||
|
writePixel(x+i, y, (uint8_t)pgm_read_byte(&bitmap[j * w + i]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a RAM-resident 8-bit image (grayscale) with a 1-bit mask
|
||
|
// (set bits = opaque, unset bits = clear) at the specified (x,y) pos.
|
||
|
// BOTH buffers (grayscale and mask) must be RAM-resident, no mix-and-
|
||
|
// match. Specifically for 8-bit display devices such as IS31FL3731;
|
||
|
// no color reduction/expansion is performed.
|
||
|
void Adafruit_GFX::drawGrayscaleBitmap(int16_t x, int16_t y,
|
||
|
uint8_t *bitmap, uint8_t *mask, int16_t w, int16_t h) {
|
||
|
int16_t bw = (w + 7) / 8; // Bitmask scanline pad = whole byte
|
||
|
uint8_t byte = 0;
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
if(i & 7) byte <<= 1;
|
||
|
else byte = mask[j * bw + i / 8];
|
||
|
if(byte & 0x80) {
|
||
|
writePixel(x+i, y, bitmap[j * w + i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a PROGMEM-resident 16-bit image (RGB 5/6/5) at the specified (x,y)
|
||
|
// position. For 16-bit display devices; no color reduction performed.
|
||
|
void Adafruit_GFX::drawRGBBitmap(int16_t x, int16_t y,
|
||
|
const uint16_t bitmap[], int16_t w, int16_t h) {
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
writePixel(x+i, y, pgm_read_word(&bitmap[j * w + i]));
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a RAM-resident 16-bit image (RGB 5/6/5) at the specified (x,y)
|
||
|
// position. For 16-bit display devices; no color reduction performed.
|
||
|
void Adafruit_GFX::drawRGBBitmap(int16_t x, int16_t y,
|
||
|
uint16_t *bitmap, int16_t w, int16_t h) {
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
writePixel(x+i, y, bitmap[j * w + i]);
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a PROGMEM-resident 16-bit image (RGB 5/6/5) with a 1-bit mask
|
||
|
// (set bits = opaque, unset bits = clear) at the specified (x,y) position.
|
||
|
// BOTH buffers (color and mask) must be PROGMEM-resident.
|
||
|
// For 16-bit display devices; no color reduction performed.
|
||
|
void Adafruit_GFX::drawRGBBitmap(int16_t x, int16_t y,
|
||
|
const uint16_t bitmap[], const uint8_t mask[],
|
||
|
int16_t w, int16_t h) {
|
||
|
int16_t bw = (w + 7) / 8; // Bitmask scanline pad = whole byte
|
||
|
uint8_t byte = 0;
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
if(i & 7) byte <<= 1;
|
||
|
else byte = pgm_read_byte(&mask[j * bw + i / 8]);
|
||
|
if(byte & 0x80) {
|
||
|
writePixel(x+i, y, pgm_read_word(&bitmap[j * w + i]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// Draw a RAM-resident 16-bit image (RGB 5/6/5) with a 1-bit mask
|
||
|
// (set bits = opaque, unset bits = clear) at the specified (x,y) pos.
|
||
|
// BOTH buffers (color and mask) must be RAM-resident, no mix-and-match.
|
||
|
// For 16-bit display devices; no color reduction performed.
|
||
|
void Adafruit_GFX::drawRGBBitmap(int16_t x, int16_t y,
|
||
|
uint16_t *bitmap, uint8_t *mask, int16_t w, int16_t h) {
|
||
|
int16_t bw = (w + 7) / 8; // Bitmask scanline pad = whole byte
|
||
|
uint8_t byte = 0;
|
||
|
startWrite();
|
||
|
for(int16_t j=0; j<h; j++, y++) {
|
||
|
for(int16_t i=0; i<w; i++ ) {
|
||
|
if(i & 7) byte <<= 1;
|
||
|
else byte = mask[j * bw + i / 8];
|
||
|
if(byte & 0x80) {
|
||
|
writePixel(x+i, y, bitmap[j * w + i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
}
|
||
|
|
||
|
// TEXT- AND CHARACTER-HANDLING FUNCTIONS ----------------------------------
|
||
|
|
||
|
// Draw a character
|
||
|
void Adafruit_GFX::drawChar(int16_t x, int16_t y, unsigned char c,
|
||
|
uint16_t color, uint16_t bg, uint8_t size) {
|
||
|
|
||
|
if(!gfxFont) { // 'Classic' built-in font
|
||
|
|
||
|
if((x >= _width) || // Clip right
|
||
|
(y >= _height) || // Clip bottom
|
||
|
((x + 6 * size - 1) < 0) || // Clip left
|
||
|
((y + 8 * size - 1) < 0)) // Clip top
|
||
|
return;
|
||
|
|
||
|
if(!_cp437 && (c >= 176)) c++; // Handle 'classic' charset behavior
|
||
|
|
||
|
startWrite();
|
||
|
for(int8_t i=0; i<5; i++ ) { // Char bitmap = 5 columns
|
||
|
uint8_t line = pgm_read_byte(&font[c * 5 + i]);
|
||
|
for(int8_t j=0; j<8; j++, line >>= 1) {
|
||
|
if(line & 1) {
|
||
|
if(size == 1)
|
||
|
writePixel(x+i, y+j, color);
|
||
|
else
|
||
|
writeFillRect(x+i*size, y+j*size, size, size, color);
|
||
|
} else if(bg != color) {
|
||
|
if(size == 1)
|
||
|
writePixel(x+i, y+j, bg);
|
||
|
else
|
||
|
writeFillRect(x+i*size, y+j*size, size, size, bg);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if(bg != color) { // If opaque, draw vertical line for last column
|
||
|
if(size == 1) writeFastVLine(x+5, y, 8, bg);
|
||
|
else writeFillRect(x+5*size, y, size, 8*size, bg);
|
||
|
}
|
||
|
endWrite();
|
||
|
|
||
|
} else { // Custom font
|
||
|
|
||
|
// Character is assumed previously filtered by write() to eliminate
|
||
|
// newlines, returns, non-printable characters, etc. Calling
|
||
|
// drawChar() directly with 'bad' characters of font may cause mayhem!
|
||
|
|
||
|
c -= (uint8_t)pgm_read_byte(&gfxFont->first);
|
||
|
GFXglyph *glyph = &(((GFXglyph *)pgm_read_pointer(&gfxFont->glyph))[c]);
|
||
|
uint8_t *bitmap = (uint8_t *)pgm_read_pointer(&gfxFont->bitmap);
|
||
|
|
||
|
uint16_t bo = pgm_read_word(&glyph->bitmapOffset);
|
||
|
uint8_t w = pgm_read_byte(&glyph->width),
|
||
|
h = pgm_read_byte(&glyph->height);
|
||
|
int8_t xo = pgm_read_byte(&glyph->xOffset),
|
||
|
yo = pgm_read_byte(&glyph->yOffset);
|
||
|
uint8_t xx, yy, bits = 0, bit = 0;
|
||
|
int16_t xo16 = 0, yo16 = 0;
|
||
|
|
||
|
if(size > 1) {
|
||
|
xo16 = xo;
|
||
|
yo16 = yo;
|
||
|
}
|
||
|
|
||
|
// Todo: Add character clipping here
|
||
|
|
||
|
// NOTE: THERE IS NO 'BACKGROUND' COLOR OPTION ON CUSTOM FONTS.
|
||
|
// THIS IS ON PURPOSE AND BY DESIGN. The background color feature
|
||
|
// has typically been used with the 'classic' font to overwrite old
|
||
|
// screen contents with new data. This ONLY works because the
|
||
|
// characters are a uniform size; it's not a sensible thing to do with
|
||
|
// proportionally-spaced fonts with glyphs of varying sizes (and that
|
||
|
// may overlap). To replace previously-drawn text when using a custom
|
||
|
// font, use the getTextBounds() function to determine the smallest
|
||
|
// rectangle encompassing a string, erase the area with fillRect(),
|
||
|
// then draw new text. This WILL infortunately 'blink' the text, but
|
||
|
// is unavoidable. Drawing 'background' pixels will NOT fix this,
|
||
|
// only creates a new set of problems. Have an idea to work around
|
||
|
// this (a canvas object type for MCUs that can afford the RAM and
|
||
|
// displays supporting setAddrWindow() and pushColors()), but haven't
|
||
|
// implemented this yet.
|
||
|
|
||
|
startWrite();
|
||
|
for(yy=0; yy<h; yy++) {
|
||
|
for(xx=0; xx<w; xx++) {
|
||
|
if(!(bit++ & 7)) {
|
||
|
bits = pgm_read_byte(&bitmap[bo++]);
|
||
|
}
|
||
|
if(bits & 0x80) {
|
||
|
if(size == 1) {
|
||
|
writePixel(x+xo+xx, y+yo+yy, color);
|
||
|
} else {
|
||
|
writeFillRect(x+(xo16+xx)*size, y+(yo16+yy)*size,
|
||
|
size, size, color);
|
||
|
}
|
||
|
}
|
||
|
bits <<= 1;
|
||
|
}
|
||
|
}
|
||
|
endWrite();
|
||
|
|
||
|
} // End classic vs custom font
|
||
|
}
|
||
|
|
||
|
#if ARDUINO >= 100
|
||
|
size_t Adafruit_GFX::write(uint8_t c) {
|
||
|
#else
|
||
|
void Adafruit_GFX::write(uint8_t c) {
|
||
|
#endif
|
||
|
if(!gfxFont) { // 'Classic' built-in font
|
||
|
|
||
|
if(c == '\n') { // Newline?
|
||
|
cursor_x = 0; // Reset x to zero,
|
||
|
cursor_y += textsize * 8; // advance y one line
|
||
|
} else if(c != '\r') { // Ignore carriage returns
|
||
|
if(wrap && ((cursor_x + textsize * 6) > _width)) { // Off right?
|
||
|
cursor_x = 0; // Reset x to zero,
|
||
|
cursor_y += textsize * 8; // advance y one line
|
||
|
}
|
||
|
drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize);
|
||
|
cursor_x += textsize * 6; // Advance x one char
|
||
|
}
|
||
|
|
||
|
} else { // Custom font
|
||
|
|
||
|
if(c == '\n') {
|
||
|
cursor_x = 0;
|
||
|
cursor_y += (int16_t)textsize *
|
||
|
(uint8_t)pgm_read_byte(&gfxFont->yAdvance);
|
||
|
} else if(c != '\r') {
|
||
|
uint8_t first = pgm_read_byte(&gfxFont->first);
|
||
|
if((c >= first) && (c <= (uint8_t)pgm_read_byte(&gfxFont->last))) {
|
||
|
GFXglyph *glyph = &(((GFXglyph *)pgm_read_pointer(
|
||
|
&gfxFont->glyph))[c - first]);
|
||
|
uint8_t w = pgm_read_byte(&glyph->width),
|
||
|
h = pgm_read_byte(&glyph->height);
|
||
|
if((w > 0) && (h > 0)) { // Is there an associated bitmap?
|
||
|
int16_t xo = (int8_t)pgm_read_byte(&glyph->xOffset); // sic
|
||
|
if(wrap && ((cursor_x + textsize * (xo + w)) > _width)) {
|
||
|
cursor_x = 0;
|
||
|
cursor_y += (int16_t)textsize *
|
||
|
(uint8_t)pgm_read_byte(&gfxFont->yAdvance);
|
||
|
}
|
||
|
drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize);
|
||
|
}
|
||
|
cursor_x += (uint8_t)pgm_read_byte(&glyph->xAdvance) * (int16_t)textsize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
#if ARDUINO >= 100
|
||
|
return 1;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::setCursor(int16_t x, int16_t y) {
|
||
|
cursor_x = x;
|
||
|
cursor_y = y;
|
||
|
}
|
||
|
|
||
|
int16_t Adafruit_GFX::getCursorX(void) const {
|
||
|
return cursor_x;
|
||
|
}
|
||
|
|
||
|
int16_t Adafruit_GFX::getCursorY(void) const {
|
||
|
return cursor_y;
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::setTextSize(uint8_t s) {
|
||
|
textsize = (s > 0) ? s : 1;
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::setTextColor(uint16_t c) {
|
||
|
// For 'transparent' background, we'll set the bg
|
||
|
// to the same as fg instead of using a flag
|
||
|
textcolor = textbgcolor = c;
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::setTextColor(uint16_t c, uint16_t b) {
|
||
|
textcolor = c;
|
||
|
textbgcolor = b;
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::setTextWrap(boolean w) {
|
||
|
wrap = w;
|
||
|
}
|
||
|
|
||
|
uint8_t Adafruit_GFX::getRotation(void) const {
|
||
|
return rotation;
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::setRotation(uint8_t x) {
|
||
|
rotation = (x & 3);
|
||
|
switch(rotation) {
|
||
|
case 0:
|
||
|
case 2:
|
||
|
_width = WIDTH;
|
||
|
_height = HEIGHT;
|
||
|
break;
|
||
|
case 1:
|
||
|
case 3:
|
||
|
_width = HEIGHT;
|
||
|
_height = WIDTH;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Enable (or disable) Code Page 437-compatible charset.
|
||
|
// There was an error in glcdfont.c for the longest time -- one character
|
||
|
// (#176, the 'light shade' block) was missing -- this threw off the index
|
||
|
// of every character that followed it. But a TON of code has been written
|
||
|
// with the erroneous character indices. By default, the library uses the
|
||
|
// original 'wrong' behavior and old sketches will still work. Pass 'true'
|
||
|
// to this function to use correct CP437 character values in your code.
|
||
|
void Adafruit_GFX::cp437(boolean x) {
|
||
|
_cp437 = x;
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::setFont(const GFXfont *f) {
|
||
|
if(f) { // Font struct pointer passed in?
|
||
|
if(!gfxFont) { // And no current font struct?
|
||
|
// Switching from classic to new font behavior.
|
||
|
// Move cursor pos down 6 pixels so it's on baseline.
|
||
|
cursor_y += 6;
|
||
|
}
|
||
|
} else if(gfxFont) { // NULL passed. Current font struct defined?
|
||
|
// Switching from new to classic font behavior.
|
||
|
// Move cursor pos up 6 pixels so it's at top-left of char.
|
||
|
cursor_y -= 6;
|
||
|
}
|
||
|
gfxFont = (GFXfont *)f;
|
||
|
}
|
||
|
|
||
|
// Broke this out as it's used by both the PROGMEM- and RAM-resident
|
||
|
// getTextBounds() functions.
|
||
|
void Adafruit_GFX::charBounds(char c, int16_t *x, int16_t *y,
|
||
|
int16_t *minx, int16_t *miny, int16_t *maxx, int16_t *maxy) {
|
||
|
|
||
|
if(gfxFont) {
|
||
|
|
||
|
if(c == '\n') { // Newline?
|
||
|
*x = 0; // Reset x to zero, advance y by one line
|
||
|
*y += textsize * (uint8_t)pgm_read_byte(&gfxFont->yAdvance);
|
||
|
} else if(c != '\r') { // Not a carriage return; is normal char
|
||
|
uint8_t first = pgm_read_byte(&gfxFont->first),
|
||
|
last = pgm_read_byte(&gfxFont->last);
|
||
|
if((c >= first) && (c <= last)) { // Char present in this font?
|
||
|
GFXglyph *glyph = &(((GFXglyph *)pgm_read_pointer(
|
||
|
&gfxFont->glyph))[c - first]);
|
||
|
uint8_t gw = pgm_read_byte(&glyph->width),
|
||
|
gh = pgm_read_byte(&glyph->height),
|
||
|
xa = pgm_read_byte(&glyph->xAdvance);
|
||
|
int8_t xo = pgm_read_byte(&glyph->xOffset),
|
||
|
yo = pgm_read_byte(&glyph->yOffset);
|
||
|
if(wrap && ((*x+(((int16_t)xo+gw)*textsize)) > _width)) {
|
||
|
*x = 0; // Reset x to zero, advance y by one line
|
||
|
*y += textsize * (uint8_t)pgm_read_byte(&gfxFont->yAdvance);
|
||
|
}
|
||
|
int16_t ts = (int16_t)textsize,
|
||
|
x1 = *x + xo * ts,
|
||
|
y1 = *y + yo * ts,
|
||
|
x2 = x1 + gw * ts - 1,
|
||
|
y2 = y1 + gh * ts - 1;
|
||
|
if(x1 < *minx) *minx = x1;
|
||
|
if(y1 < *miny) *miny = y1;
|
||
|
if(x2 > *maxx) *maxx = x2;
|
||
|
if(y2 > *maxy) *maxy = y2;
|
||
|
*x += xa * ts;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} else { // Default font
|
||
|
|
||
|
if(c == '\n') { // Newline?
|
||
|
*x = 0; // Reset x to zero,
|
||
|
*y += textsize * 8; // advance y one line
|
||
|
// min/max x/y unchaged -- that waits for next 'normal' character
|
||
|
} else if(c != '\r') { // Normal char; ignore carriage returns
|
||
|
if(wrap && ((*x + textsize * 6) > _width)) { // Off right?
|
||
|
*x = 0; // Reset x to zero,
|
||
|
*y += textsize * 8; // advance y one line
|
||
|
}
|
||
|
int x2 = *x + textsize * 6 - 1, // Lower-right pixel of char
|
||
|
y2 = *y + textsize * 8 - 1;
|
||
|
if(x2 > *maxx) *maxx = x2; // Track max x, y
|
||
|
if(y2 > *maxy) *maxy = y2;
|
||
|
if(*x < *minx) *minx = *x; // Track min x, y
|
||
|
if(*y < *miny) *miny = *y;
|
||
|
*x += textsize * 6; // Advance x one char
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Pass string and a cursor position, returns UL corner and W,H.
|
||
|
void Adafruit_GFX::getTextBounds(char *str, int16_t x, int16_t y,
|
||
|
int16_t *x1, int16_t *y1, uint16_t *w, uint16_t *h) {
|
||
|
uint8_t c; // Current character
|
||
|
|
||
|
*x1 = x;
|
||
|
*y1 = y;
|
||
|
*w = *h = 0;
|
||
|
|
||
|
int16_t minx = _width, miny = _height, maxx = -1, maxy = -1;
|
||
|
|
||
|
while((c = *str++))
|
||
|
charBounds(c, &x, &y, &minx, &miny, &maxx, &maxy);
|
||
|
|
||
|
if(maxx >= minx) {
|
||
|
*x1 = minx;
|
||
|
*w = maxx - minx + 1;
|
||
|
}
|
||
|
if(maxy >= miny) {
|
||
|
*y1 = miny;
|
||
|
*h = maxy - miny + 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Same as above, but for PROGMEM strings
|
||
|
void Adafruit_GFX::getTextBounds(const __FlashStringHelper *str,
|
||
|
int16_t x, int16_t y, int16_t *x1, int16_t *y1, uint16_t *w, uint16_t *h) {
|
||
|
uint8_t *s = (uint8_t *)str, c;
|
||
|
|
||
|
*x1 = x;
|
||
|
*y1 = y;
|
||
|
*w = *h = 0;
|
||
|
|
||
|
int16_t minx = _width, miny = _height, maxx = -1, maxy = -1;
|
||
|
|
||
|
while((c = pgm_read_byte(s++)))
|
||
|
charBounds(c, &x, &y, &minx, &miny, &maxx, &maxy);
|
||
|
|
||
|
if(maxx >= minx) {
|
||
|
*x1 = minx;
|
||
|
*w = maxx - minx + 1;
|
||
|
}
|
||
|
if(maxy >= miny) {
|
||
|
*y1 = miny;
|
||
|
*h = maxy - miny + 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the size of the display (per current rotation)
|
||
|
int16_t Adafruit_GFX::width(void) const {
|
||
|
return _width;
|
||
|
}
|
||
|
|
||
|
int16_t Adafruit_GFX::height(void) const {
|
||
|
return _height;
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX::invertDisplay(boolean i) {
|
||
|
// Do nothing, must be subclassed if supported by hardware
|
||
|
}
|
||
|
|
||
|
/***************************************************************************/
|
||
|
// code for the GFX button UI element
|
||
|
|
||
|
Adafruit_GFX_Button::Adafruit_GFX_Button(void) {
|
||
|
_gfx = 0;
|
||
|
}
|
||
|
|
||
|
// Classic initButton() function: pass center & size
|
||
|
void Adafruit_GFX_Button::initButton(
|
||
|
Adafruit_GFX *gfx, int16_t x, int16_t y, uint16_t w, uint16_t h,
|
||
|
uint16_t outline, uint16_t fill, uint16_t textcolor,
|
||
|
char *label, uint8_t textsize)
|
||
|
{
|
||
|
// Tweak arguments and pass to the newer initButtonUL() function...
|
||
|
initButtonUL(gfx, x - (w / 2), y - (h / 2), w, h, outline, fill,
|
||
|
textcolor, label, textsize);
|
||
|
}
|
||
|
|
||
|
// Newer function instead accepts upper-left corner & size
|
||
|
void Adafruit_GFX_Button::initButtonUL(
|
||
|
Adafruit_GFX *gfx, int16_t x1, int16_t y1, uint16_t w, uint16_t h,
|
||
|
uint16_t outline, uint16_t fill, uint16_t textcolor,
|
||
|
char *label, uint8_t textsize)
|
||
|
{
|
||
|
_x1 = x1;
|
||
|
_y1 = y1;
|
||
|
_w = w;
|
||
|
_h = h;
|
||
|
_outlinecolor = outline;
|
||
|
_fillcolor = fill;
|
||
|
_textcolor = textcolor;
|
||
|
_textsize = textsize;
|
||
|
_gfx = gfx;
|
||
|
strncpy(_label, label, 9);
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX_Button::drawButton(boolean inverted) {
|
||
|
uint16_t fill, outline, text;
|
||
|
|
||
|
if(!inverted) {
|
||
|
fill = _fillcolor;
|
||
|
outline = _outlinecolor;
|
||
|
text = _textcolor;
|
||
|
} else {
|
||
|
fill = _textcolor;
|
||
|
outline = _outlinecolor;
|
||
|
text = _fillcolor;
|
||
|
}
|
||
|
|
||
|
uint8_t r = min(_w, _h) / 4; // Corner radius
|
||
|
_gfx->fillRoundRect(_x1, _y1, _w, _h, r, fill);
|
||
|
_gfx->drawRoundRect(_x1, _y1, _w, _h, r, outline);
|
||
|
|
||
|
_gfx->setCursor(_x1 + (_w/2) - (strlen(_label) * 3 * _textsize),
|
||
|
_y1 + (_h/2) - (4 * _textsize));
|
||
|
_gfx->setTextColor(text);
|
||
|
_gfx->setTextSize(_textsize);
|
||
|
_gfx->print(_label);
|
||
|
}
|
||
|
|
||
|
boolean Adafruit_GFX_Button::contains(int16_t x, int16_t y) {
|
||
|
return ((x >= _x1) && (x < (_x1 + _w)) &&
|
||
|
(y >= _y1) && (y < (_y1 + _h)));
|
||
|
}
|
||
|
|
||
|
void Adafruit_GFX_Button::press(boolean p) {
|
||
|
laststate = currstate;
|
||
|
currstate = p;
|
||
|
}
|
||
|
|
||
|
boolean Adafruit_GFX_Button::isPressed() { return currstate; }
|
||
|
boolean Adafruit_GFX_Button::justPressed() { return (currstate && !laststate); }
|
||
|
boolean Adafruit_GFX_Button::justReleased() { return (!currstate && laststate); }
|
||
|
|
||
|
// -------------------------------------------------------------------------
|
||
|
|
||
|
// GFXcanvas1, GFXcanvas8 and GFXcanvas16 (currently a WIP, don't get too
|
||
|
// comfy with the implementation) provide 1-, 8- and 16-bit offscreen
|
||
|
// canvases, the address of which can be passed to drawBitmap() or
|
||
|
// pushColors() (the latter appears only in a couple of GFX-subclassed TFT
|
||
|
// libraries at this time). This is here mostly to help with the recently-
|
||
|
// added proportionally-spaced fonts; adds a way to refresh a section of the
|
||
|
// screen without a massive flickering clear-and-redraw...but maybe you'll
|
||
|
// find other uses too. VERY RAM-intensive, since the buffer is in MCU
|
||
|
// memory and not the display driver...GXFcanvas1 might be minimally useful
|
||
|
// on an Uno-class board, but this and the others are much more likely to
|
||
|
// require at least a Mega or various recent ARM-type boards (recommended,
|
||
|
// as the text+bitmap draw can be pokey). GFXcanvas1 requires 1 bit per
|
||
|
// pixel (rounded up to nearest byte per scanline), GFXcanvas8 is 1 byte
|
||
|
// per pixel (no scanline pad), and GFXcanvas16 uses 2 bytes per pixel (no
|
||
|
// scanline pad).
|
||
|
// NOT EXTENSIVELY TESTED YET. MAY CONTAIN WORST BUGS KNOWN TO HUMANKIND.
|
||
|
|
||
|
GFXcanvas1::GFXcanvas1(uint16_t w, uint16_t h) : Adafruit_GFX(w, h) {
|
||
|
uint16_t bytes = ((w + 7) / 8) * h;
|
||
|
if((buffer = (uint8_t *)malloc(bytes))) {
|
||
|
memset(buffer, 0, bytes);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
GFXcanvas1::~GFXcanvas1(void) {
|
||
|
if(buffer) free(buffer);
|
||
|
}
|
||
|
|
||
|
uint8_t* GFXcanvas1::getBuffer(void) {
|
||
|
return buffer;
|
||
|
}
|
||
|
|
||
|
void GFXcanvas1::drawPixel(int16_t x, int16_t y, uint16_t color) {
|
||
|
#ifdef __AVR__
|
||
|
// Bitmask tables of 0x80>>X and ~(0x80>>X), because X>>Y is slow on AVR
|
||
|
static const uint8_t PROGMEM
|
||
|
GFXsetBit[] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 },
|
||
|
GFXclrBit[] = { 0x7F, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, 0xFE };
|
||
|
#endif
|
||
|
|
||
|
if(buffer) {
|
||
|
if((x < 0) || (y < 0) || (x >= _width) || (y >= _height)) return;
|
||
|
|
||
|
int16_t t;
|
||
|
switch(rotation) {
|
||
|
case 1:
|
||
|
t = x;
|
||
|
x = WIDTH - 1 - y;
|
||
|
y = t;
|
||
|
break;
|
||
|
case 2:
|
||
|
x = WIDTH - 1 - x;
|
||
|
y = HEIGHT - 1 - y;
|
||
|
break;
|
||
|
case 3:
|
||
|
t = x;
|
||
|
x = y;
|
||
|
y = HEIGHT - 1 - t;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
uint8_t *ptr = &buffer[(x / 8) + y * ((WIDTH + 7) / 8)];
|
||
|
#ifdef __AVR__
|
||
|
if(color) *ptr |= pgm_read_byte(&GFXsetBit[x & 7]);
|
||
|
else *ptr &= pgm_read_byte(&GFXclrBit[x & 7]);
|
||
|
#else
|
||
|
if(color) *ptr |= 0x80 >> (x & 7);
|
||
|
else *ptr &= ~(0x80 >> (x & 7));
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void GFXcanvas1::fillScreen(uint16_t color) {
|
||
|
if(buffer) {
|
||
|
uint16_t bytes = ((WIDTH + 7) / 8) * HEIGHT;
|
||
|
memset(buffer, color ? 0xFF : 0x00, bytes);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
GFXcanvas8::GFXcanvas8(uint16_t w, uint16_t h) : Adafruit_GFX(w, h) {
|
||
|
uint32_t bytes = w * h;
|
||
|
if((buffer = (uint8_t *)malloc(bytes))) {
|
||
|
memset(buffer, 0, bytes);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
GFXcanvas8::~GFXcanvas8(void) {
|
||
|
if(buffer) free(buffer);
|
||
|
}
|
||
|
|
||
|
uint8_t* GFXcanvas8::getBuffer(void) {
|
||
|
return buffer;
|
||
|
}
|
||
|
|
||
|
void GFXcanvas8::drawPixel(int16_t x, int16_t y, uint16_t color) {
|
||
|
if(buffer) {
|
||
|
if((x < 0) || (y < 0) || (x >= _width) || (y >= _height)) return;
|
||
|
|
||
|
int16_t t;
|
||
|
switch(rotation) {
|
||
|
case 1:
|
||
|
t = x;
|
||
|
x = WIDTH - 1 - y;
|
||
|
y = t;
|
||
|
break;
|
||
|
case 2:
|
||
|
x = WIDTH - 1 - x;
|
||
|
y = HEIGHT - 1 - y;
|
||
|
break;
|
||
|
case 3:
|
||
|
t = x;
|
||
|
x = y;
|
||
|
y = HEIGHT - 1 - t;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
buffer[x + y * WIDTH] = color;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void GFXcanvas8::fillScreen(uint16_t color) {
|
||
|
if(buffer) {
|
||
|
memset(buffer, color, WIDTH * HEIGHT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void GFXcanvas8::writeFastHLine(int16_t x, int16_t y,
|
||
|
int16_t w, uint16_t color) {
|
||
|
|
||
|
if((x >= _width) || (y < 0) || (y >= _height)) return;
|
||
|
int16_t x2 = x + w - 1;
|
||
|
if(x2 < 0) return;
|
||
|
|
||
|
// Clip left/right
|
||
|
if(x < 0) {
|
||
|
x = 0;
|
||
|
w = x2 + 1;
|
||
|
}
|
||
|
if(x2 >= _width) w = _width - x;
|
||
|
|
||
|
int16_t t;
|
||
|
switch(rotation) {
|
||
|
case 1:
|
||
|
t = x;
|
||
|
x = WIDTH - 1 - y;
|
||
|
y = t;
|
||
|
break;
|
||
|
case 2:
|
||
|
x = WIDTH - 1 - x;
|
||
|
y = HEIGHT - 1 - y;
|
||
|
break;
|
||
|
case 3:
|
||
|
t = x;
|
||
|
x = y;
|
||
|
y = HEIGHT - 1 - t;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
memset(buffer + y * WIDTH + x, color, w);
|
||
|
}
|
||
|
|
||
|
GFXcanvas16::GFXcanvas16(uint16_t w, uint16_t h) : Adafruit_GFX(w, h) {
|
||
|
uint32_t bytes = w * h * 2;
|
||
|
if((buffer = (uint16_t *)malloc(bytes))) {
|
||
|
memset(buffer, 0, bytes);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
GFXcanvas16::~GFXcanvas16(void) {
|
||
|
if(buffer) free(buffer);
|
||
|
}
|
||
|
|
||
|
uint16_t* GFXcanvas16::getBuffer(void) {
|
||
|
return buffer;
|
||
|
}
|
||
|
|
||
|
void GFXcanvas16::drawPixel(int16_t x, int16_t y, uint16_t color) {
|
||
|
if(buffer) {
|
||
|
if((x < 0) || (y < 0) || (x >= _width) || (y >= _height)) return;
|
||
|
|
||
|
int16_t t;
|
||
|
switch(rotation) {
|
||
|
case 1:
|
||
|
t = x;
|
||
|
x = WIDTH - 1 - y;
|
||
|
y = t;
|
||
|
break;
|
||
|
case 2:
|
||
|
x = WIDTH - 1 - x;
|
||
|
y = HEIGHT - 1 - y;
|
||
|
break;
|
||
|
case 3:
|
||
|
t = x;
|
||
|
x = y;
|
||
|
y = HEIGHT - 1 - t;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
buffer[x + y * WIDTH] = color;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void GFXcanvas16::fillScreen(uint16_t color) {
|
||
|
if(buffer) {
|
||
|
uint8_t hi = color >> 8, lo = color & 0xFF;
|
||
|
if(hi == lo) {
|
||
|
memset(buffer, lo, WIDTH * HEIGHT * 2);
|
||
|
} else {
|
||
|
uint32_t i, pixels = WIDTH * HEIGHT;
|
||
|
for(i=0; i<pixels; i++) buffer[i] = color;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|