osd-contiki/examples/osd/arduino-dallastemp/sketch.pde

178 lines
5.5 KiB
Text
Raw Normal View History

2015-10-07 16:14:00 +02:00
/*
* Sample arduino sketch using contiki features.
* We turn the LED off
* We allow read the moisture sensor
* Unfortunately sleeping for long times in loop() isn't currently
* possible, something turns off the CPU (including PWM outputs) if a
* Proto-Thread is taking too long. We need to find out how to sleep in
* a Contiki-compatible way.
* Note that for a normal arduino sketch you won't have to include any
* of the contiki-specific files here, the sketch should just work.
*/
#include <OneWire.h>
#include "DallasTemperature.h"
extern "C" {
#include "rest-engine.h"
#include "sketch.h"
2015-10-07 16:14:00 +02:00
extern volatile uint8_t mcusleepcycle; // default 16
// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 3
#define TEMPERATURE_PRECISION 9
// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature dsensors(&oneWire);
// arrays to hold device addresses
DeviceAddress insideThermometer, outsideThermometer;
extern resource_t res_dtemp1, res_dtemp2, res_battery;
2015-10-07 16:14:00 +02:00
float d_temp;
char d_temp_s[8];
// sketch.h
struct dstemp ds1820[7];
2015-10-07 16:14:00 +02:00
#define LED_PIN 4
}
// main functions to print information about a device
void printAddress(uint8_t* adress)
{
printf("%02X",adress[0]);
printf("%02X",adress[1]);
printf("%02X",adress[2]);
printf("%02X",adress[3]);
printf("%02X",adress[4]);
printf("%02X",adress[5]);
printf("%02X",adress[6]);
printf("%02X",adress[7]);
}
// function to print the temperature for a device
void printTemperature(DeviceAddress deviceAddress,int index)
2015-10-07 16:14:00 +02:00
{
d_temp = dsensors.getTempC(deviceAddress);
dtostrf(d_temp , 6, 2, d_temp_s );
printf("Temp C: ");
printf("%s",d_temp_s);
// copy to structure
ds1820[index].ftemp=d_temp;
strcpy(ds1820[index].stemp, d_temp_s);
2015-10-07 16:14:00 +02:00
}
void printData(DeviceAddress deviceAddress, int index)
2015-10-07 16:14:00 +02:00
{
printf("Device Address: ");
printAddress(deviceAddress);
printf(" ");
printTemperature(deviceAddress,index);
2015-10-07 16:14:00 +02:00
printf("\n");
}
void setup (void)
{
// switch off the led
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, HIGH);
printf("Dallas Temperature IC Control Library Demo");
// Start up the library
dsensors.begin();
// locate devices on the bus
printf("Locating devices...\n");
printf("Found ");
printf("%d",dsensors.getDeviceCount());
printf(" devices.\n");
// report parasite power requirements
printf("Parasite power is: ");
if (dsensors.isParasitePowerMode()) printf("ON\n");
else printf("OFF\n");
// assign address manually. the addresses below will beed to be changed
// to valid device addresses on your bus. device address can be retrieved
// by using either oneWire.search(deviceAddress) or individually via
// dsensors.getAddress(deviceAddress, index)
//insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 };
//outsideThermometer = { 0x28, 0x3F, 0x1C, 0x31, 0x2, 0x0, 0x0, 0x2 };
// search for devices on the bus and assign based on an index. ideally,
// you would do this to initially discover addresses on the bus and then
// use those addresses and manually assign them (see above) once you know
// the devices on your bus (and assuming they don't change).
//
// method 1: by index
if (!dsensors.getAddress(insideThermometer, 0)) printf("Unable to find address for Device 0\n");
if (!dsensors.getAddress(outsideThermometer, 1)) printf("Unable to find address for Device 1\n");
// method 2: search()
// search() looks for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are no devices,
// or you have already retrieved all of them. It might be a good idea to
// check the CRC to make sure you didn't get garbage. The order is
// deterministic. You will always get the same devices in the same order
//
// Must be called before search()
//oneWire.reset_search();
// assigns the first address found to insideThermometer
//if (!oneWire.search(insideThermometer)) Serial.println("Unable to find address for insideThermometer");
// assigns the seconds address found to outsideThermometer
//if (!oneWire.search(outsideThermometer)) Serial.println("Unable to find address for outsideThermometer");
// show the addresses we found on the bus
printf("Device 0 Address: ");
printAddress(insideThermometer);
printf("\n");
printf("Device 1 Address: ");
printAddress(outsideThermometer);
printf("\n");
// set the resolution to 9 bit
dsensors.setResolution(insideThermometer, 9);
dsensors.setResolution(outsideThermometer, 9);
printf("Device 0 Resolution: ");
printf("%d",dsensors.getResolution(insideThermometer));
printf("\n");
printf("Device 1 Resolution: ");
printf("%d",dsensors.getResolution(outsideThermometer));
printf("\n");
// init coap resourcen
rest_init_engine ();
rest_activate_resource (&res_dtemp1, "s/t1/temp");
rest_activate_resource (&res_dtemp2, "s/t2/temp");
2015-10-07 16:14:00 +02:00
rest_activate_resource (&res_battery, "s/batter");
}
// at project-conf.h
// LOOP_INTERVAL (10 * CLOCK_SECOND)
void loop (void)
{
mcusleepcycle=0; // dont sleep
// call sensors.requestTemperatures() to issue a global temperature
// request to all devices on the bus
printf("Requesting temperatures...");
dsensors.requestTemperatures();
printf("DONE\n");
// print the device information
printData(insideThermometer,0);
printData(outsideThermometer,1);
2015-10-07 16:14:00 +02:00
mcusleepcycle=32; // sleep, wakeup every 32 cycles
// debug only
}