osd-contiki/tests/rftest-rx.c

279 lines
7.9 KiB
C
Raw Normal View History

#define GPIO_FUNC_SEL0 0x80000018 /* GPIO 15 - 0; 2 bit blocks */
#define BASE_UART1 0x80005000
#define UART1_CON 0x80005000
#define UART1_STAT 0x80005004
#define UART1_DATA 0x80005008
#define UR1CON 0x8000500c
#define UT1CON 0x80005010
#define UART1_CTS 0x80005014
#define UART1_BR 0x80005018
#include "maca.h"
#include "embedded_types.h"
2009-04-02 20:54:02 +02:00
#define reg(x) (*(volatile uint32_t *)(x))
#define DELAY 400000
#define DATA 0x00401000;
#define NL "\033[K\r\n"
2009-04-02 20:54:02 +02:00
void putc(uint8_t c);
void puts(uint8_t *s);
void put_hex(uint8_t x);
void put_hex16(uint16_t x);
void put_hex32(uint32_t x);
const uint8_t hex[16]={'0','1','2','3','4','5','6','7',
'8','9','a','b','c','d','e','f'};
void magic(void) {
#define X 0x80009a000
#define Y 0x80009a008
#define VAL 0x0000f7df
volatile uint32_t x,y;
x = reg(X); /* get X */
x &= 0xfffeffff; /* clear bit 16 */
reg(X) = x; /* put it back */
y = reg(Y); /* get Y */
y |= VAL; /* or with the VAL */
x = reg(X); /* get X again */
x |= 16; /* or with 16 */
reg(X) = x; /* put X back */
reg(Y) = y; /* put Y back */
}
uint32_t ackBox[10];
#define command_xcvr_rx() \
do { \
maca_txlen = (uint32_t)1<<16; \
maca_dmatx = (uint32_t)&ackBox; \
maca_dmarx = DATA; \
maca_tmren = (maca_cpl_clk | maca_soft_clk); \
maca_control = (control_prm | control_asap | control_seq_rx); \
}while(FALSE)
void dump_regs(uint32_t base, uint32_t len) {
volatile uint32_t i;
puts("base +0 +4 +8 +c +10 +14 +18 +1c \n\r");
for (i = 0; i < len; i ++) {
if ((i & 7) == 0) {
put_hex16(4 * i);
}
puts(" ");
put_hex32(reg(base+(4*i)));
if ((i & 7) == 7)
puts(NL);
}
puts(NL);
}
2009-04-02 20:54:02 +02:00
__attribute__ ((section ("startup")))
void main(void) {
2009-04-02 20:54:02 +02:00
uint8_t c;
volatile uint32_t i;
uint32_t tmp;
2009-04-02 20:54:02 +02:00
volatile uint32_t *data;
uint16_t status;
2009-04-02 20:54:02 +02:00
/* Restore UART regs. to default */
/* in case there is still bootloader state leftover */
2009-04-02 20:54:02 +02:00
reg(UART1_CON) = 0x0000c800; /* mask interrupts, 16 bit sample --- helps explain the baud rate */
/* INC = 767; MOD = 9999 works: 115200 @ 24 MHz 16 bit sample */
#define INC 767
#define MOD 9999
2009-04-02 20:54:02 +02:00
reg(UART1_BR) = INC<<16 | MOD;
/* see Section 11.5.1.2 Alternate Modes */
/* you must enable the peripheral first BEFORE setting the function in GPIO_FUNC_SEL */
/* From the datasheet: "The peripheral function will control operation of the pad IF */
/* THE PERIPHERAL IS ENABLED. */
2009-04-02 20:54:02 +02:00
reg(UART1_CON) = 0x00000003; /* enable receive and transmit */
reg(GPIO_FUNC_SEL0) = ( (0x01 << (14*2)) | (0x01 << (15*2)) ); /* set GPIO15-14 to UART (UART1 TX and RX)*/
reset_maca();
radio_init();
2009-04-11 23:17:37 +02:00
flyback_init();
vreg_init();
init_phy();
/* some kind of sequence in init phy from MACPHY.a dissassmbly */
// magic();
reg(MACA_CONTROL) = SMAC_MACA_CNTL_INIT_STATE;
for(i=0; i<DELAY; i++) { continue; }
2009-04-02 20:54:02 +02:00
data = (void *)DATA;
2009-04-02 20:54:02 +02:00
data[0] = 0xdeadbeef;
reg(MACA_DMARX) = DATA; /* put data somewhere */
// reg(MACA_PREAMBLE) = 0xface0fff;
reg(MACA_PREAMBLE) = 0;
puts("maca_base\n\r");
dump_regs(MACA_BASE, 96);
puts("modem write base\n\r");
dump_regs(0x80009000, 96);
puts("modem read base\n\r");
dump_regs(0x800091c0, 96);
puts("CRM\n\r");
dump_regs(0x80003000, 96);
puts("reserved modem_base\n\r");
dump_regs(0x80009200, 192);
// while(1);
command_xcvr_rx();
2009-04-02 20:54:02 +02:00
puts("\033[H\033[2J");
while(1) {
uint32_t TsmRxSteps, LastWarmupStep, LastWarmupData, LastWarmdownStep, LastWarmdownData;
puts("\033[Hrftest-rx --- " );
2009-04-02 20:54:02 +02:00
puts(" maca_getrxlvl: 0x");
put_hex(reg(MACA_GETRXLVL));
puts(" data[0]: 0x");
put_hex32(data[0]);
puts(" status: 0x");
put_hex32(reg(MACA_STATUS));
puts(" random: 0x");
put_hex32(reg(MACA_RANDOM));
puts(NL);
puts("Maca_base");
puts(NL);
dump_regs(MACA_BASE,96);
puts("0x80009000");
puts(NL);
dump_regs(0x80009000,192);
/* /\* start rx sequence *\/ */
/* reg(MACA_CONTROL) = 0x00031a01; /\* abort *\/ */
/* while (((tmp = reg(MACA_STATUS)) & 15) == 14) */
/* puts("."); */
/* puts("abort status is "); put_hex32(tmp); puts(NL); */
/* puts("1 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
/* puts("2 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
/* puts("3 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
/* read TSM_RX_STEPS */
TsmRxSteps = (*((volatile uint32_t *)(0x80009204)));
puts("TsmRxSteps: ");
put_hex32(TsmRxSteps);
puts(NL);
/* isolate the RX_WU_STEPS */
/* shift left to align with 32-bit addressing */
LastWarmupStep = (TsmRxSteps & 0x1f) << 2;
/* Read "current" TSM step and save this value for later */
LastWarmupData = (*((volatile uint32_t *)(0x80009300 + LastWarmupStep)));
puts("LastWarmupData: ");
put_hex32(LastWarmupData);
puts(NL);
/* isolate the RX_WD_STEPS */
/* right-shift bits down to bit 0 position */
/* left-shift to align with 32-bit addressing */
LastWarmdownStep = ((TsmRxSteps & 0x1f00) >> 8) << 2;
/* write "last warmdown data" to current TSM step to shutdown rx */
LastWarmdownData = (*((volatile uint32_t *)(0x80009300 + LastWarmdownStep)));
puts("LastWarmdownData: ");
put_hex32(LastWarmdownData);
puts(NL);
status = reg(MACA_STATUS) & 0x0000ffff;
switch(status)
{
case(cc_aborted):
{
puts("aborted\n\r");
ResumeMACASync();
command_xcvr_rx();
break;
}
case(cc_not_completed):
{
puts("not completed\n\r");
ResumeMACASync();
break;
}
case(cc_success):
{
puts("success\n\r");
break;
}
default:
{
puts("status: ");
put_hex16(status);
ResumeMACASync();
command_xcvr_rx();
}
}
/* reg(MACA_CONTROL) = 0x00031a04; /\* receive *\/ */
/* while (((tmp = reg(MACA_STATUS)) & 15) == 14) */
/* puts("."); */
/* puts("complete status is "); put_hex32(tmp); puts(NL); */
/* puts("1 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
/* puts("2 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
/* puts("3 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
/* puts(NL); */
/* for(i=0; i<DELAY; i++) { continue; } */
/* for(i=0; i<DELAY; i++) { continue; } */
/* for(i=0; i<DELAY; i++) { continue; } */
/* for(i=0; i<DELAY; i++) { continue; } */
/* for(i=0; i<DELAY; i++) { continue; } */
2009-04-02 20:54:02 +02:00
};
}
2009-04-02 20:54:02 +02:00
void putc(uint8_t c) {
while(reg(UT1CON)==31); /* wait for there to be room in the buffer */
reg(UART1_DATA) = c;
}
void puts(uint8_t *s) {
while(s && *s!=0) {
putc(*s++);
}
}
void put_hex(uint8_t x)
{
putc(hex[x >> 4]);
putc(hex[x & 15]);
}
void put_hex16(uint16_t x)
{
put_hex((x >> 8) & 0xFF);
put_hex((x) & 0xFF);
}
void put_hex32(uint32_t x)
{
put_hex((x >> 24) & 0xFF);
put_hex((x >> 16) & 0xFF);
put_hex((x >> 8) & 0xFF);
put_hex((x) & 0xFF);
}