Removed easing formulas and placed them as a plugin under interface
This commit is contained in:
parent
887b890fa6
commit
645570310b
111
src/fx/fx.js
111
src/fx/fx.js
|
@ -499,7 +499,7 @@ jQuery.extend({
|
|||
// Figure out where in the animation we are and set the number
|
||||
var p = n / z.o.duration;
|
||||
//if the easing function exists then use it else use default linear easing
|
||||
if (jQuery.easing[z.o.easing])
|
||||
if (jQuery.easing && jQuery.easing[z.o.easing])
|
||||
z.now = jQuery.easing[z.o.easing](p, n, firstNum, (lastNum-firstNum), z.o.duration);
|
||||
else
|
||||
z.now = ((-Math.cos(p*Math.PI)/2) + 0.5) * (lastNum-firstNum) + firstNum;
|
||||
|
@ -509,114 +509,5 @@ jQuery.extend({
|
|||
}
|
||||
};
|
||||
|
||||
},
|
||||
|
||||
/**
|
||||
*
|
||||
* @param Integer p period step in animation
|
||||
* @param Integer n current time
|
||||
* @param Mixed firstNum begin value
|
||||
* @param Mixed delta change in
|
||||
* @param Integer duration duration
|
||||
*/
|
||||
easing : {
|
||||
linear: function(p, n, firstNum, delta, duration) {
|
||||
return ((-Math.cos(p*Math.PI)/2) + 0.5) * delta + firstNum;
|
||||
},
|
||||
|
||||
easein: function(p, n, firstNum, delta, duration) {
|
||||
return delta*(n/=duration)*n*n + firstNum;
|
||||
},
|
||||
|
||||
easeout: function(p, n, firstNum, delta, duration) {
|
||||
return -delta * ((n=n/duration-1)*n*n*n - 1) + firstNum;
|
||||
},
|
||||
|
||||
easeboth: function(p, n, firstNum, delta, duration) {
|
||||
if ((n/=duration/2) < 1)
|
||||
return delta/2*n*n*n*n + firstNum;
|
||||
return -delta/2 * ((n-=2)*n*n*n - 2) + firstNum;
|
||||
},
|
||||
|
||||
bounceout: function(p, n, firstNum, delta, duration) {
|
||||
if ((n/=duration) < (1/2.75)) {
|
||||
return delta*(7.5625*n*n) + firstNum;
|
||||
} else if (n < (2/2.75)) {
|
||||
return delta*(7.5625*(n-=(1.5/2.75))*n + .75) + firstNum;
|
||||
} else if (n < (2.5/2.75)) {
|
||||
return delta*(7.5625*(n-=(2.25/2.75))*n + .9375) + firstNum;
|
||||
} else {
|
||||
return delta*(7.5625*(n-=(2.625/2.75))*n + .984375) + firstNum;
|
||||
}
|
||||
},
|
||||
|
||||
bouncein: function(p, n, firstNum, delta, duration) {
|
||||
if (jQuery.easing.bounceout)
|
||||
return delta - jQuery.easing.bounceout (p, duration - n, 0, delta, duration) + firstNum;
|
||||
return firstNum + delta;
|
||||
},
|
||||
|
||||
bounceboth: function(p, n, firstNum, delta, duration) {
|
||||
if (jQuery.easing.bouncein && jQuery.easing.bounceout)
|
||||
if (n < duration/2)
|
||||
return jQuery.easing.bouncein(p, n*2, 0, delta, duration) * .5 + firstNum;
|
||||
return jQuery.easing.bounceout(p, n*2-duration, 0, delta, duration) * .5 + delta*.5 + firstNum;
|
||||
return firstNum + delta;
|
||||
},
|
||||
|
||||
elasticin: function(p, n, firstNum, delta, duration) {
|
||||
var a, s;
|
||||
if (n == 0)
|
||||
return firstNum;
|
||||
if ((n/=duration)==1)
|
||||
return firstNum+delta;
|
||||
a = delta * 0.3;
|
||||
p=duration*.3;
|
||||
if (a < Math.abs(delta)) {
|
||||
a=delta;
|
||||
s=p/4;
|
||||
} else {
|
||||
s = p/(2*Math.PI) * Math.asin (delta/a);
|
||||
}
|
||||
return -(a*Math.pow(2,10*(n-=1)) * Math.sin( (n*duration-s)*(2*Math.PI)/p )) + firstNum;
|
||||
},
|
||||
|
||||
elasticout:function(p, n, firstNum, delta, duration) {
|
||||
var a, s;
|
||||
if (n==0)
|
||||
return firstNum;
|
||||
if ((n/=duration/2)==2)
|
||||
return firstNum + delta;
|
||||
a = delta * 0.3;
|
||||
p=duration*.3;
|
||||
if (a < Math.abs(delta)){
|
||||
a = delta;
|
||||
s=p/4;
|
||||
} else {
|
||||
s = p/(2*Math.PI) * Math.asin (delta/a);
|
||||
}
|
||||
return a*Math.pow(2,-10*n) * Math.sin( (n*duration-s)*(2*Math.PI)/p ) + delta + firstNum;
|
||||
},
|
||||
|
||||
elasticboth: function(p, n, firstNum, delta, duration) {
|
||||
var a, s;
|
||||
if (n==0)
|
||||
return firstNum;
|
||||
if ((n/=duration/2)==2)
|
||||
return firstNum + delta;
|
||||
a = delta * 0.3;
|
||||
p=duration*.3;
|
||||
if (a < Math.abs(delta)){
|
||||
a = delta;
|
||||
s=p/4;
|
||||
} else {
|
||||
s = p/(2*Math.PI) * Math.asin (delta/a);
|
||||
}
|
||||
if (n < 1) {
|
||||
return -.5*(a*Math.pow(2,10*(n-=1)) * Math.sin( (n*duration-s)*(2*Math.PI)/p )) + firstNum;
|
||||
}
|
||||
return a*Math.pow(2,-10*(n-=1)) * Math.sin( (n*duration-s)*(2*Math.PI)/p )*.5 + delta + firstNum;
|
||||
}
|
||||
}
|
||||
|
||||
});
|
Loading…
Reference in a new issue