246 lines
No EOL
7.3 KiB
JavaScript
246 lines
No EOL
7.3 KiB
JavaScript
/**
|
|
* Package: svedit.math
|
|
*
|
|
* Licensed under the Apache License, Version 2
|
|
*
|
|
* Copyright(c) 2010 Alexis Deveria
|
|
* Copyright(c) 2010 Jeff Schiller
|
|
*/
|
|
|
|
// Dependencies:
|
|
// None.
|
|
|
|
var svgedit = svgedit || {};
|
|
|
|
(function() {
|
|
|
|
if (!svgedit.math) {
|
|
svgedit.math = {};
|
|
}
|
|
|
|
// Constants
|
|
var NEAR_ZERO = 1e-14;
|
|
|
|
// Throw away SVGSVGElement used for creating matrices/transforms.
|
|
var svg = document.createElementNS('http://www.w3.org/2000/svg', 'svg');
|
|
|
|
// Function: svgedit.math.transformPoint
|
|
// A (hopefully) quicker function to transform a point by a matrix
|
|
// (this function avoids any DOM calls and just does the math)
|
|
//
|
|
// Parameters:
|
|
// x - Float representing the x coordinate
|
|
// y - Float representing the y coordinate
|
|
// m - Matrix object to transform the point with
|
|
// Returns a x,y object representing the transformed point
|
|
svgedit.math.transformPoint = function(x, y, m) {
|
|
return { x: m.a * x + m.c * y + m.e, y: m.b * x + m.d * y + m.f};
|
|
};
|
|
|
|
|
|
// Function: svgedit.math.isIdentity
|
|
// Helper function to check if the matrix performs no actual transform
|
|
// (i.e. exists for identity purposes)
|
|
//
|
|
// Parameters:
|
|
// m - The matrix object to check
|
|
//
|
|
// Returns:
|
|
// Boolean indicating whether or not the matrix is 1,0,0,1,0,0
|
|
svgedit.math.isIdentity = function(m) {
|
|
return (m.a === 1 && m.b === 0 && m.c === 0 && m.d === 1 && m.e === 0 && m.f === 0);
|
|
};
|
|
|
|
|
|
// Function: svgedit.math.matrixMultiply
|
|
// This function tries to return a SVGMatrix that is the multiplication m1*m2.
|
|
// We also round to zero when it's near zero
|
|
//
|
|
// Parameters:
|
|
// >= 2 Matrix objects to multiply
|
|
//
|
|
// Returns:
|
|
// The matrix object resulting from the calculation
|
|
svgedit.math.matrixMultiply = function() {
|
|
var args = arguments, i = args.length, m = args[i-1];
|
|
|
|
while(i-- > 1) {
|
|
var m1 = args[i-1];
|
|
m = m1.multiply(m);
|
|
}
|
|
if (Math.abs(m.a) < NEAR_ZERO) m.a = 0;
|
|
if (Math.abs(m.b) < NEAR_ZERO) m.b = 0;
|
|
if (Math.abs(m.c) < NEAR_ZERO) m.c = 0;
|
|
if (Math.abs(m.d) < NEAR_ZERO) m.d = 0;
|
|
if (Math.abs(m.e) < NEAR_ZERO) m.e = 0;
|
|
if (Math.abs(m.f) < NEAR_ZERO) m.f = 0;
|
|
|
|
return m;
|
|
};
|
|
|
|
// Function: svgedit.math.hasMatrixTransform
|
|
// See if the given transformlist includes a non-indentity matrix transform
|
|
//
|
|
// Parameters:
|
|
// tlist - The transformlist to check
|
|
//
|
|
// Returns:
|
|
// Boolean on whether or not a matrix transform was found
|
|
svgedit.math.hasMatrixTransform = function(tlist) {
|
|
if(!tlist) return false;
|
|
var num = tlist.numberOfItems;
|
|
while (num--) {
|
|
var xform = tlist.getItem(num);
|
|
if (xform.type == 1 && !svgedit.math.isIdentity(xform.matrix)) return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Function: svgedit.math.transformBox
|
|
// Transforms a rectangle based on the given matrix
|
|
//
|
|
// Parameters:
|
|
// l - Float with the box's left coordinate
|
|
// t - Float with the box's top coordinate
|
|
// w - Float with the box width
|
|
// h - Float with the box height
|
|
// m - Matrix object to transform the box by
|
|
//
|
|
// Returns:
|
|
// An object with the following values:
|
|
// * tl - The top left coordinate (x,y object)
|
|
// * tr - The top right coordinate (x,y object)
|
|
// * bl - The bottom left coordinate (x,y object)
|
|
// * br - The bottom right coordinate (x,y object)
|
|
// * aabox - Object with the following values:
|
|
// * Float with the axis-aligned x coordinate
|
|
// * Float with the axis-aligned y coordinate
|
|
// * Float with the axis-aligned width coordinate
|
|
// * Float with the axis-aligned height coordinate
|
|
svgedit.math.transformBox = function(l, t, w, h, m) {
|
|
var topleft = {x:l,y:t},
|
|
topright = {x:(l+w),y:t},
|
|
botright = {x:(l+w),y:(t+h)},
|
|
botleft = {x:l,y:(t+h)};
|
|
var transformPoint = svgedit.math.transformPoint;
|
|
topleft = transformPoint( topleft.x, topleft.y, m );
|
|
var minx = topleft.x,
|
|
maxx = topleft.x,
|
|
miny = topleft.y,
|
|
maxy = topleft.y;
|
|
topright = transformPoint( topright.x, topright.y, m );
|
|
minx = Math.min(minx, topright.x);
|
|
maxx = Math.max(maxx, topright.x);
|
|
miny = Math.min(miny, topright.y);
|
|
maxy = Math.max(maxy, topright.y);
|
|
botleft = transformPoint( botleft.x, botleft.y, m);
|
|
minx = Math.min(minx, botleft.x);
|
|
maxx = Math.max(maxx, botleft.x);
|
|
miny = Math.min(miny, botleft.y);
|
|
maxy = Math.max(maxy, botleft.y);
|
|
botright = transformPoint( botright.x, botright.y, m );
|
|
minx = Math.min(minx, botright.x);
|
|
maxx = Math.max(maxx, botright.x);
|
|
miny = Math.min(miny, botright.y);
|
|
maxy = Math.max(maxy, botright.y);
|
|
|
|
return {tl:topleft, tr:topright, bl:botleft, br:botright,
|
|
aabox: {x:minx, y:miny, width:(maxx-minx), height:(maxy-miny)} };
|
|
};
|
|
|
|
// Function: svgedit.math.transformListToTransform
|
|
// This returns a single matrix Transform for a given Transform List
|
|
// (this is the equivalent of SVGTransformList.consolidate() but unlike
|
|
// that method, this one does not modify the actual SVGTransformList)
|
|
// This function is very liberal with its min,max arguments
|
|
//
|
|
// Parameters:
|
|
// tlist - The transformlist object
|
|
// min - Optional integer indicating start transform position
|
|
// max - Optional integer indicating end transform position
|
|
//
|
|
// Returns:
|
|
// A single matrix transform object
|
|
svgedit.math.transformListToTransform = function(tlist, min, max) {
|
|
if(tlist == null) {
|
|
// Or should tlist = null have been prevented before this?
|
|
return svg.createSVGTransformFromMatrix(svg.createSVGMatrix());
|
|
}
|
|
var min = min == undefined ? 0 : min;
|
|
var max = max == undefined ? (tlist.numberOfItems-1) : max;
|
|
min = parseInt(min);
|
|
max = parseInt(max);
|
|
if (min > max) { var temp = max; max = min; min = temp; }
|
|
var m = svg.createSVGMatrix();
|
|
for (var i = min; i <= max; ++i) {
|
|
// if our indices are out of range, just use a harmless identity matrix
|
|
var mtom = (i >= 0 && i < tlist.numberOfItems ?
|
|
tlist.getItem(i).matrix :
|
|
svg.createSVGMatrix());
|
|
m = svgedit.math.matrixMultiply(m, mtom);
|
|
}
|
|
return svg.createSVGTransformFromMatrix(m);
|
|
};
|
|
|
|
|
|
// Function: svgedit.math.getMatrix
|
|
// Get the matrix object for a given element
|
|
//
|
|
// Parameters:
|
|
// elem - The DOM element to check
|
|
//
|
|
// Returns:
|
|
// The matrix object associated with the element's transformlist
|
|
svgedit.math.getMatrix = function(elem) {
|
|
var tlist = svgedit.transformlist.getTransformList(elem);
|
|
return svgedit.math.transformListToTransform(tlist).matrix;
|
|
};
|
|
|
|
|
|
// Function: svgedit.math.snapToAngle
|
|
// Returns a 45 degree angle coordinate associated with the two given
|
|
// coordinates
|
|
//
|
|
// Parameters:
|
|
// x1 - First coordinate's x value
|
|
// x2 - Second coordinate's x value
|
|
// y1 - First coordinate's y value
|
|
// y2 - Second coordinate's y value
|
|
//
|
|
// Returns:
|
|
// Object with the following values:
|
|
// x - The angle-snapped x value
|
|
// y - The angle-snapped y value
|
|
// snapangle - The angle at which to snap
|
|
svgedit.math.snapToAngle = function(x1,y1,x2,y2) {
|
|
var snap = Math.PI/4; // 45 degrees
|
|
var dx = x2 - x1;
|
|
var dy = y2 - y1;
|
|
var angle = Math.atan2(dy,dx);
|
|
var dist = Math.sqrt(dx * dx + dy * dy);
|
|
var snapangle= Math.round(angle/snap)*snap;
|
|
var x = x1 + dist*Math.cos(snapangle);
|
|
var y = y1 + dist*Math.sin(snapangle);
|
|
//console.log(x1,y1,x2,y2,x,y,angle)
|
|
return {x:x, y:y, a:snapangle};
|
|
};
|
|
|
|
|
|
// Function: rectsIntersect
|
|
// Check if two rectangles (BBoxes objects) intersect each other
|
|
//
|
|
// Paramaters:
|
|
// r1 - The first BBox-like object
|
|
// r2 - The second BBox-like object
|
|
//
|
|
// Returns:
|
|
// Boolean that's true if rectangles intersect
|
|
svgedit.math.rectsIntersect = function(r1, r2) {
|
|
return r2.x < (r1.x+r1.width) &&
|
|
(r2.x+r2.width) > r1.x &&
|
|
r2.y < (r1.y+r1.height) &&
|
|
(r2.y+r2.height) > r1.y;
|
|
};
|
|
|
|
|
|
})(); |