Make Andrea Happy
Use a counter, instead of rand() to aid in generating unique IDs in Maruku. Add Unit test for the Theorem Environment.
This commit is contained in:
parent
e48b000c11
commit
39348c65c2
4 changed files with 85 additions and 4 deletions
|
@ -65,11 +65,86 @@ class PageRendererTest < Test::Unit::TestCase
|
|||
%{<mi>sin</mi><mo stretchy='false'>(</mo><mi>x</mi><mo stretchy='false'>)</mo></math></p>},
|
||||
"equation $\\sin(x)$")
|
||||
|
||||
re = Regexp.new('<h1 id=\'my_headline_\\d{1,4}\'>My Headline</h1>\n\n<p>that <span class=\'newWikiWord\'>Smart Engine GUI<a href=\'../show/SmartEngineGUI\'>\?</a></span></p>')
|
||||
re = Regexp.new('\\A<h1 id=\'my_headline_\\d{1,4}\'>My Headline</h1>\n\n<p>that <span class=\'newWikiWord\'>Smart Engine GUI<a href=\'../show/SmartEngineGUI\'>\?</a></span></p>\\Z')
|
||||
|
||||
assert_match_markup_parsed_as(re, "My Headline\n===========\n\nthat SmartEngineGUI")
|
||||
|
||||
assert_match_markup_parsed_as(re, "#My Headline#\n\nthat SmartEngineGUI")
|
||||
|
||||
str1 = %{<div class='un_defn'>\n<h6 id='definition_\\d\{1,4\}'>Definition</h6>\n\n<p>Let <math} +
|
||||
%{ class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>H</mi>} +
|
||||
%{</math> be a subgroup of a group <math class='maruku-mathml' display='inline' xmlns='http://w} +
|
||||
%{ww.w3.org/1998/Math/MathML'><mi>G</mi></math>. A <em>left coset</em> of <math class='maruku-m} +
|
||||
%{athml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>H</mi></math> in <math} +
|
||||
%{ class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>G</mi>} +
|
||||
%{</math> is a subset of <math class='maruku-mathml' display='inline' xmlns='http://www.w3.org/} +
|
||||
%{1998/Math/MathML'><mi>G</mi></math> that is of the form <math class='maruku-mathml' display='} +
|
||||
%{inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>x</mi><mi>H</mi></math>, where <math} +
|
||||
%{ class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>x</mi>} +
|
||||
%{<mo>\342\210\210</mo><mi>G</mi></math> and <math class='maruku-mathml' display='inline' xmlns} +
|
||||
%{='http://www.w3.org/1998/Math/MathML'><mi>x</mi><mi>H</mi><mo>=</mo><mo stretchy='false'>\\\{<} +
|
||||
%{/mo><mi>x</mi><mi>h</mi><mo>:</mo><mi>h</mi><mo>\342\210\210</mo><mi>H</mi><mo stretchy='fals} +
|
||||
%{e'>\\\}</mo></math>.</p>\n\n<p>Similarly a <em>right coset</em> of <math class='maruku-mathml'} +
|
||||
%{ display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>H</mi></math> in <math class} +
|
||||
%{='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>G</mi></math} +
|
||||
%{> is a subset of <math class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/M} +
|
||||
%{ath/MathML'><mi>G</mi></math> that is of the form <math class='maruku-mathml' display='inline} +
|
||||
%{' xmlns='http://www.w3.org/1998/Math/MathML'><mi>H</mi><mi>x</mi></math>, where <math class='} +
|
||||
%{maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>H</mi><mi>x</m} +
|
||||
%{i><mo>=</mo><mo stretchy='false'>\\\{</mo><mi>h</mi><mi>x</mi><mo>:</mo><mi>h</mi><mo>\342\210\210} +
|
||||
%{</mo><mi>H</mi><mo stretchy='false'>\\\}</mo></math>.</p>\n</div>\n\n} +
|
||||
%{<div class='num_lemma' id='LeftCosetsDisjoint'>\n<h6 id='lemma_\\d\{1,4\}'>Lemma</h6>\n\n<p>} +
|
||||
%{Let <math class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'>} +
|
||||
%{<mi>H</mi></math> be a subgroup of a group <math class='maruku-mathml' display='inline' xmlns} +
|
||||
%{='http://www.w3.org/1998/Math/MathML'><mi>G</mi></math>, and let <math class='maruku-mathml'} +
|
||||
%{ display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>x</mi></math> and <math cla} +
|
||||
%{ss='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>y</mi></ma} +
|
||||
%{th> be elements of <math class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/} +
|
||||
%{Math/MathML'><mi>G</mi></math>. Suppose that <math class='maruku-mathml' display='inline' xmln} +
|
||||
%{s='http://www.w3.org/1998/Math/MathML'><mi>x</mi><mi>H</mi><mo>\342\210\251</mo><mi>y</mi><mi>} +
|
||||
%{H</mi></math> is non-empty. Then <math class='maruku-mathml' display='inline' xmlns='http://ww} +
|
||||
%{w.w3.org/1998/Math/MathML'><mi>x</mi><mi>H</mi><mo>=</mo><mi>y</mi><mi>H</mi></math>.</p>\n</d} +
|
||||
%{iv>\n\n<div class='proof'>\n<h6 id='proof_\\d\{1,4\}'>Proof</h6>\n\n<p>Let <math class='maruku-m} +
|
||||
%{athml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>z</mi></math> be some e} +
|
||||
%{lement of <math class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/Math} +
|
||||
%{ML'><mi>x</mi><mi>H</mi><mo>\342\210\251</mo><mi>y</mi><mi>H</mi></math>.</p>\n</div>\n\n} +
|
||||
%{<div class='num_lemma' id='SizeOfLeftCoset'>\n<h6 id='lemma_\\d\{1,4\}'>Lemma</h6>\n\n<p>} +
|
||||
%{Let <math class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'>} +
|
||||
%{<mi>H</mi></math> be a finite subgroup of a group <math class='maruku-mathml' display='inline' xmlns} +
|
||||
%{='http://www.w3.org/1998/Math/MathML'><mi>G</mi></math>.</p>\n</div>\n\n} +
|
||||
%{<div class='num_theorem' id='Lagrange'>\n<h6 id='theorem_\\d\{1,4\}'>Theorem</h6>\n\n<p><strong>\\(Lagrange\342\200\231s Theorem\\).</strong> Let <math class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>G</mi></math> be a finite group, and let <math class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>H</mi></math> be a subgroup of <math class='maruku-mathml' display='inline' xmlns='http://www.w3.org/1998/Math/MathML'><mi>G</mi></math>.</p>\n</div>}
|
||||
|
||||
str2 = <<END_THM
|
||||
+-- {: .un_defn}
|
||||
###### Definition
|
||||
Let $H$ be a subgroup of a group $G$. A *left coset* of $H$ in $G$ is a subset of $G$ that is of the form $x H$, where $x \\in G$ and $x H = \\{ x h : h \\in H \\}$.
|
||||
|
||||
Similarly a *right coset* of $H$ in $G$ is a subset of $G$ that is of the form $H x$, where $H x = \\{ h x : h \\in H \\}$.
|
||||
=--
|
||||
|
||||
+-- {: .num_lemma #LeftCosetsDisjoint}
|
||||
###### Lemma
|
||||
Let $H$ be a subgroup of a group $G$, and let $x$ and $y$ be
|
||||
elements of $G$. Suppose that $x H \\cap y H$ is non-empty. Then $x H = y H$.
|
||||
=--
|
||||
|
||||
+-- {: .proof}
|
||||
###### Proof
|
||||
Let $z$ be some element of $x H \\cap y H$.
|
||||
=--
|
||||
|
||||
+-- {: .num_lemma #SizeOfLeftCoset}
|
||||
###### Lemma
|
||||
Let $H$ be a finite subgroup of a group $G$.
|
||||
=--
|
||||
|
||||
+-- {: .num_theorem #Lagrange}
|
||||
###### Theorem
|
||||
**(Lagrange's Theorem).** Let $G$ be a finite group, and let $H$ be a subgroup of $G$.
|
||||
=--
|
||||
END_THM
|
||||
|
||||
assert_match_markup_parsed_as(Regexp.new(str1), str2)
|
||||
|
||||
assert_markup_parsed_as(
|
||||
%{<p>SVG <animateColor title='MathML'><span class='newWikiWord'>} +
|
||||
|
|
|
@ -2,7 +2,7 @@ module MaRuKu
|
|||
|
||||
class MDDocument
|
||||
# Hash equation id (String) to equation element (MDElement)
|
||||
attr_accessor :eqid2eq, :refid2ref
|
||||
attr_accessor :eqid2eq
|
||||
|
||||
def is_math_enabled?
|
||||
get_setting :math_enabled
|
||||
|
|
|
@ -45,8 +45,9 @@ class MDElement
|
|||
$uid += 1
|
||||
title = "id#{$uid}"
|
||||
end
|
||||
|
||||
title << "_" + rand(10000).to_s
|
||||
|
||||
@doc.id_counter += 1
|
||||
title << "_" + @doc.id_counter.to_s
|
||||
end
|
||||
end
|
||||
|
||||
|
|
|
@ -144,6 +144,10 @@ class MDDocument
|
|||
safe_attr_accessor :footnotes_order, Array
|
||||
|
||||
safe_attr_accessor :latex_required_packages, Array
|
||||
|
||||
safe_attr_accessor :refid2ref, Hash
|
||||
# A counter for generating unique IDs
|
||||
safe_attr_accessor :id_counter, Integer
|
||||
|
||||
def initialize(s=nil)
|
||||
super(:document)
|
||||
|
@ -155,6 +159,7 @@ class MDDocument
|
|||
self.abbreviations = {}
|
||||
self.ald = {}
|
||||
self.latex_required_packages = []
|
||||
self.id_counter = 0
|
||||
|
||||
parse_doc(s) if s
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue